About the Project

exponential%20integrals

AdvancedHelp

(0.005 seconds)

11—20 of 37 matching pages

11: 20.10 Integrals
§20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
For further integrals of theta functions see Erdélyi et al. (1954a, pp. 61–62 and 339), Prudnikov et al. (1990, pp. 356–358), Prudnikov et al. (1992a, §3.41), and Gradshteyn and Ryzhik (2000, pp. 627–628).
12: Bibliography G
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • W. Gautschi (1959a) Exponential integral 1 e x t t n 𝑑 t for large values of n . J. Res. Nat. Bur. Standards 62, pp. 123–125.
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 13: 22.3 Graphics
    See accompanying text
    Figure 22.3.13: sn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.15: dn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
    See accompanying text
    Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . Grayscale, running from 0 (black) to 10 (white), with | sn ( 20 , k ) | > 10 truncated to 10. … Magnify
    14: 11.14 Tables
  • Agrest et al. (1982) tabulates 𝐇 n ( x ) and e x 𝐋 n ( x ) for n = 0 , 1 and x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • Zhang and Jin (1996) tabulates 𝐇 n ( x ) and 𝐋 n ( x ) for n = 4 ( 1 ) 3 and x = 0 ( 1 ) 20 to 8D or 7S.

  • §11.14(iii) Integrals
  • Abramowitz and Stegun (1964, Chapter 12) tabulates 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t and ( 2 / π ) x t 1 𝐇 0 ( t ) d t for x = 0 ( .1 ) 5 to 5D or 7D; 0 x ( 𝐇 0 ( t ) Y 0 ( t ) ) d t ( 2 / π ) ln x , 0 x ( I 0 ( t ) 𝐋 0 ( t ) ) d t ( 2 / π ) ln x , and x t 1 ( 𝐇 0 ( t ) Y 0 ( t ) ) d t for x 1 = 0 ( .01 ) 0.2 to 6D.

  • Agrest et al. (1982) tabulates 0 x 𝐇 0 ( t ) d t and e x 0 x 𝐋 0 ( t ) d t for x = 0 ( .001 ) 5 ( .005 ) 15 ( .01 ) 100 to 11D.

  • 15: Errata
  • Equation (27.12.8)
    27.12.8 li ( x ) ϕ ( m ) + O ( x exp ( λ ( α ) ( ln x ) 1 / 2 ) ) , m ( ln x ) α , α > 0

    Originally the first term was given incorrectly by x ϕ ( m ) .

    Reported 2017-12-04 by Gergő Nemes.

  • Equation (9.10.18)
    9.10.18 Ai ( z ) = 3 z 5 / 4 e ( 2 / 3 ) z 3 / 2 4 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t

    The original equation taken from Schulten et al. (1979) was incorrect.

    Reported 2015-03-20 by Walter Gautschi.

  • Equation (9.10.19)
    9.10.19 Bi ( x ) = 3 x 5 / 4 e ( 2 / 3 ) x 3 / 2 2 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) x 3 / 2 t 3 / 2 d t

    The original equation taken from Schulten et al. (1979) was incorrect.

    Reported 2015-03-20 by Walter Gautschi.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 16: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 17: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 18: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • A. J. MacLeod (2002b) The efficient computation of some generalised exponential integrals. J. Comput. Appl. Math. 148 (2), pp. 363–374.
  • J. W. Meijer and N. H. G. Baken (1987) The exponential integral distribution. Statist. Probab. Lett. 5 (3), pp. 209–211.
  • G. F. Miller (1960) Tables of Generalized Exponential Integrals. NPL Mathematical Tables, Vol. III, Her Majesty’s Stationery Office, London.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 19: 25.12 Polylogarithms
    The right-hand side is called Clausen’s integral. …
    Integral Representation
    §25.12(iii) Fermi–Dirac and Bose–Einstein Integrals
    The Fermi–Dirac and Bose–Einstein integrals are defined by … In terms of polylogarithms …
    20: 9.18 Tables
  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.

  • §9.18(v) Integrals