About the Project

expansions%20in%20series%20of%20hypergeometric%20functions

AdvancedHelp

(0.020 seconds)

11—19 of 19 matching pages

11: Bibliography P
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986b) Integrals and Series: Special Functions, Vol. 2. Gordon & Breach Science Publishers, New York.
  • 12: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.
  • 13: Bibliography
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992b) Hypergeometric Functions and Elliptic Integrals. In Current Topics in Analytic Function Theory, H. M. Srivastava and S. Owa (Eds.), pp. 48–85.
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • T. M. Apostol (1990) Modular Functions and Dirichlet Series in Number Theory. 2nd edition, Graduate Texts in Mathematics, Vol. 41, Springer-Verlag, New York.
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • 14: Bibliography B
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. G. Bickley and J. Nayler (1935) A short table of the functions Ki n ( x ) , from n = 1 to n = 16 . Phil. Mag. Series 7 20, pp. 343–347.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • J. L. Burchnall and T. W. Chaundy (1940) Expansions of Appell’s double hypergeometric functions. Quart. J. Math., Oxford Ser. 11, pp. 249–270.
  • J. L. Burchnall and T. W. Chaundy (1941) Expansions of Appell’s double hypergeometric functions. II. Quart. J. Math., Oxford Ser. 12, pp. 112–128.
  • 15: 2.11 Remainder Terms; Stokes Phenomenon
    Secondly, the asymptotic series represents an infinite class of functions, and the remainder depends on which member we have in mind. … These answers are linked to the terms involving the complementary error function in the more powerful expansions typified by the combination of (2.11.10) and (2.11.15). … For illustration, we give re-expansions of the remainder terms in the expansions (2.7.8) arising in differential-equation theory. … In this way we arrive at hyperasymptotic expansions. … The transformations in §3.9 for summing slowly convergent series can also be very effective when applied to divergent asymptotic series. …
    16: Bibliography W
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • E. M. Wright (1940a) The asymptotic expansion of the generalized hypergeometric function. Proc. London Math. Soc. (2) 46, pp. 389–408.
  • 17: 8.17 Incomplete Beta Functions
    §8.17 Incomplete Beta Functions
    where, as in §5.12, B ( a , b ) denotes the beta function: …
    §8.17(ii) Hypergeometric Representations
    For the hypergeometric function F ( a , b ; c ; z ) see §15.2(i). … For sums of infinite series whose terms involve the incomplete beta function see Hansen (1975, §62). …
    18: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 19: Bibliography L
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.