About the Project

expansions%20in%20series%20of%20Bessel%20functions

AdvancedHelp

(0.023 seconds)

11—17 of 17 matching pages

11: Bibliography P
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.
  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (1986b) Integrals and Series: Special Functions, Vol. 2. Gordon & Breach Science Publishers, New York.
  • 12: Bibliography M
  • N. W. McLachlan (1961) Bessel Functions for Engineers. 2nd edition, Clarendon Press, Oxford.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in 𝑆𝑈 ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • 13: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • H. M. Nussenzveig (1992) Diffraction Effects in Semiclassical Scattering. Montroll Memorial Lecture Series in Mathematical Physics, Cambridge University Press.
  • 14: Bibliography C
  • B. C. Carlson (2008) Power series for inverse Jacobian elliptic functions. Math. Comp. 77 (263), pp. 1615–1621.
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • J. P. Coleman and A. J. Monaghan (1983) Chebyshev expansions for the Bessel function J n ( z ) in the complex plane. Math. Comp. 40 (161), pp. 343–366.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • R. M. Corless, D. J. Jeffrey, and D. E. Knuth (1997) A sequence of series for the Lambert W function. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), pp. 197–204.
  • 15: Bibliography L
  • A. Laforgia (1979) On the Zeros of the Derivative of Bessel Functions of Second Kind. Pubblicazioni Serie III [Publication Series III], Vol. 179, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • J. L. López and E. Pérez Sinusía (2014) New series expansions for the confluent hypergeometric function M ( a , b , z ) . Appl. Math. Comput. 235, pp. 26–31.
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 16: Bibliography W
  • E. J. Weniger (1996) Computation of the Whittaker function of the second kind by summing its divergent asymptotic series with the help of nonlinear sequence transformations. Computers in Physics 10 (5), pp. 496–503.
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • R. Wong and J.-M. Zhang (1997) Asymptotic expansions of the generalized Bessel polynomials. J. Comput. Appl. Math. 85 (1), pp. 87–112.
  • E. M. Wright (1935) The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2) 38, pp. 257–270.
  • 17: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • A. Gil, J. Segura, and N. M. Temme (2003a) Computation of the modified Bessel function of the third kind of imaginary orders: Uniform Airy-type asymptotic expansion. J. Comput. Appl. Math. 153 (1-2), pp. 225–234.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • E. Grosswald (1978) Bessel Polynomials. Lecture Notes in Mathematics, Vol. 698, Springer, Berlin-New York.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.