About the Project

differential%20equation

AdvancedHelp

(0.002 seconds)

21—28 of 28 matching pages

21: Bibliography N
β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • β–Ί
  • V. A. Noonburg (1995) A separating surface for the Painlevé differential equation x ′′ = x 2 t . J. Math. Anal. Appl. 193 (3), pp. 817–831.
  • β–Ί
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations Ο΅ ⁒ ( p ⁒ y ) + ( q + Ο΅ ⁒ r ) ⁒ y = f . Pergamon Press, Oxford.
  • 22: 25.11 Hurwitz Zeta Function
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.11.1: Hurwitz zeta function ΞΆ ⁑ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
    β–Ί
    25.11.6 ΢ ⁑ ( s , a ) = 1 a s ⁒ ( 1 2 + a s 1 ) s ⁒ ( s + 1 ) 2 ⁒ 0 B ~ 2 ⁑ ( x ) B 2 ( x + a ) s + 2 ⁒ d x , s 1 , ⁑ s > 1 , a > 0 .
    β–Ί
    25.11.17 a ⁑ ΢ ⁑ ( s , a ) = s ⁒ ΢ ⁑ ( s + 1 , a ) , s 0 , 1 ; ⁑ a > 0 .
    β–Ί
    25.11.19 ΢ ⁑ ( s , a ) = ln ⁑ a a s ⁒ ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ⁒ ( s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ln ⁑ ( x + a ) ( x + a ) s + 2 ⁒ d x ( 2 ⁒ s + 1 ) 2 ⁒ 0 B ~ 2 ⁑ ( x ) B 2 ( x + a ) s + 2 ⁒ d x , ⁑ s > 1 , s 1 , a > 0 .
    β–Ί
    25.11.20 ( 1 ) k ⁒ ΢ ( k ) ⁑ ( s , a ) = ( ln ⁑ a ) k a s ⁒ ( 1 2 + a s 1 ) + k ! ⁒ a 1 s ⁒ r = 0 k 1 ( ln ⁑ a ) r r ! ⁒ ( s 1 ) k r + 1 s ⁒ ( s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k ( x + a ) s + 2 ⁒ d x + k ⁒ ( 2 ⁒ s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k 1 ( x + a ) s + 2 ⁒ d x k ⁒ ( k 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k 2 ( x + a ) s + 2 ⁒ d x , ⁑ s > 1 , s 1 , a > 0 .
    23: 20.11 Generalizations and Analogs
    β–ΊThe first of equations (20.9.2) can also be written … β–ΊThe importance of these combined theta functions is that sets of twelve equations for the theta functions often can be replaced by corresponding sets of three equations of the combined theta functions, plus permutation symmetry. Such sets of twelve equations include derivatives, differential equations, bisection relations, duplication relations, addition formulas (including new ones for theta functions), and pseudo-addition formulas. …
    24: 9.18 Tables
    β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 ; 8D.

  • β–Ί
  • Smirnov (1960) tabulates U 1 ⁑ ( x , Ξ± ) , U 2 ⁑ ( x , Ξ± ) , defined by (9.13.20), (9.13.21), and also U 1 ⁑ ( x , Ξ± ) / x , U 2 ⁑ ( x , Ξ± ) / x , for Ξ± = 1 , x = 6 ⁒ ( .01 ) ⁒ 10 to 5D or 5S, and also for Ξ± = ± 1 4 , ± 1 3 , ± 1 2 , ± 2 3 , ± 3 4 , 5 4 , 4 3 , 3 2 , 5 3 , 7 4 , 2, x = 0 ⁒ ( .01 ) ⁒ 6 ; 4D.

  • 25: 25.12 Polylogarithms
    β–Ί
    25.12.2 Li 2 ⁑ ( z ) = 0 z t 1 ⁒ ln ⁑ ( 1 t ) ⁒ d t , z β„‚ βˆ– ( 1 , ) .
    β–ΊThe remainder of the equations in this subsection apply to principal branches. … β–Ί
    25.12.9 n = 1 sin ⁑ ( n ⁒ θ ) n 2 = 0 θ ln ⁑ ( 2 ⁒ sin ⁑ ( 1 2 ⁒ x ) ) ⁒ d x .
    β–Ί
    β–ΊSee accompanying textβ–Ί
    Figure 25.12.1: Dilogarithm function Li 2 ⁑ ( x ) , 20 x < 1 . Magnify
    β–Ί
    β–Ί
    See accompanying text
    β–Ί
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ⁑ ( x + i ⁒ y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    26: Bibliography F
    β–Ί
  • B. R. Fabijonas, D. W. Lozier, and F. W. J. Olver (2004) Computation of complex Airy functions and their zeros using asymptotics and the differential equation. ACM Trans. Math. Software 30 (4), pp. 471–490.
  • β–Ί
  • FDLIBM (free C library)
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 27: 18.39 Applications in the Physical Sciences
    β–ΊThe finite system of functions ψ n is orthonormal in L 2 ⁑ ( ℝ , d x ) , see (18.34.7_3). … β–ΊThe Schrödinger equation with potential … β–Ί
    Other Analytically Solved Schrödinger Equations
    β–ΊSubstitution of (18.39.24) into (18.39.23) then gives the ordinary differential equation for the radial wave function R n , l ⁒ ( r ) , … β–ΊDerivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
    28: 14.30 Spherical and Spheroidal Harmonics
    β–ΊAs an example, Laplace’s equation 2 W = 0 in spherical coordinates (§1.5(ii)): β–Ί
    14.30.10 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ W ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ W ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 W Ο• 2 = 0 ,
    β–ΊIn the quantization of angular momentum the spherical harmonics Y l , m ⁑ ( ΞΈ , Ο• ) are normalized solutions of the eigenvalue equationsβ–Ί
    14.30.12 L 2 = ℏ 2 ⁒ ( 1 sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ ΞΈ ) + 1 sin 2 ⁑ ΞΈ ⁒ 2 Ο• 2 ) ,
    β–Ί
    14.30.13 L z = i ⁒ ℏ ⁒ Ο• ;