About the Project

comparison with Clenshaw–Curtis formula

AdvancedHelp

(0.001 seconds)

21—30 of 261 matching pages

21: 1.17 Integral and Series Representations of the Dirac Delta
Formal interchange of the order of integration in the Fourier integral formula ((1.14.1) and (1.14.4)): …Hence comparison with (1.17.5) shows that (1.17.9) can be interpreted as a generalized integral (1.17.3) with …Then comparison of (1.17.2) and (1.17.9) yields the formal integral representation … Formal interchange of the order of summation and integration in the Fourier summation formula ((1.8.3) and (1.8.4)): …
22: Bibliography O
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1967b) Bounds for the solutions of second-order linear difference equations. J. Res. Nat. Bur. Standards Sect. B 71B (4), pp. 161–166.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • 23: 2.4 Contour Integrals
    For large t , the asymptotic expansion of q ( t ) may be obtained from (2.4.3) by Haar’s method. This depends on the availability of a comparison function F ( z ) for Q ( z ) that has an inverse transform
    2.4.6 f ( t ) = 1 2 π i lim η σ i η σ + i η e t z F ( z ) d z
    2.4.7 q ( t ) f ( t ) = e σ t 2 π lim η η η e i t τ ( Q ( σ + i τ ) F ( σ + i τ ) ) d τ .
    2.4.8 q ( t ) = f ( t ) + o ( e c t ) , t + .
    2.4.9 q ( t ) = f ( t ) + o ( t m e c t ) , t + .
    24: 22.21 Tables
    Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. … Tables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
    25: 3.3 Interpolation
    Three-Point Formula
    Four-Point Formula
    Five-Point Formula
    Six-Point Formula
    For comparison, we use Newton’s interpolation formula (3.3.38) …
    26: Bibliography B
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • B. C. Berndt (1975b) Periodic Bernoulli numbers, summation formulas and applications. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143–189.
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • 27: Bibliography S
  • B. Simon (2005c) Sturm oscillation and comparison theorems. In Sturm-Liouville theory, pp. 29–43.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 28: 4.47 Approximations
    Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . …
    29: 2.11 Remainder Terms; Stokes Phenomenon
    §2.11(ii) Connection Formulas
    However, on combining (2.11.6) with the connection formula (8.19.18), with m = 1 , we derive … Comparison with the true value …
    30: 4.23 Inverse Trigonometric Functions
    §4.23(iii) Reflection Formulas