About the Project

classical theta functions

AdvancedHelp

(0.005 seconds)

11—20 of 28 matching pages

11: 18.17 Integrals
§18.17 Integrals
§18.17(ii) Integral Representations for Products
§18.17(v) Fourier Transforms
§18.17(vi) Laplace Transforms
§18.17(vii) Mellin Transforms
12: Bibliography M
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • A. I. Markushevich (1992) Introduction to the Classical Theory of Abelian Functions. American Mathematical Society, Providence, RI.
  • T. Masuda (2004) Classical transcendental solutions of the Painlevé equations and their degeneration. Tohoku Math. J. (2) 56 (4), pp. 467–490.
  • D. Mumford (1984) Tata Lectures on Theta. II. Birkhäuser Boston Inc., Boston, MA.
  • Y. Murata (1995) Classical solutions of the third Painlevé equation. Nagoya Math. J. 139, pp. 37–65.
  • 13: 18.5 Explicit Representations
    §18.5 Explicit Representations
    With x = cos θ = 1 2 ( z + z 1 ) , …
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    14: 18.18 Sums
    §18.18(ii) Addition Theorems
    §18.18(iii) Multiplication Theorems
    §18.18(v) Linearization Formulas
    §18.18(vii) Poisson Kernels
    15: Bibliography D
  • B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies (2004) Computing Riemann theta functions. Math. Comp. 73 (247), pp. 1417–1442.
  • D. K. Dimitrov and G. P. Nikolov (2010) Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162 (10), pp. 1793–1804.
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • N. Dunford and J. T. Schwartz (1988) Linear operators. Part II. Wiley Classics Library, John Wiley & Sons, Inc., New York.
  • 16: 18.10 Integral Representations
    §18.10 Integral Representations
    Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
    p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
    Laguerre
    For the Bessel function J ν ( z ) see §10.2(ii). … See also §18.17.
    17: 18.15 Asymptotic Approximations
    §18.15 Asymptotic Approximations
    as n , uniformly with respect to θ [ δ , π δ ] . … Also, when 1 6 π < θ < 5 6 π , the right-hand side of (18.15.12) with M = converges; paradoxically, however, the sum is 2 P n ( cos θ ) and not P n ( cos θ ) as stated erroneously in Szegő (1975, §8.4(3)). … The asymptotic behavior of the classical OP’s as x ± with the degree and parameters fixed is evident from their explicit polynomial forms; see, for example, (18.2.7) and the last two columns of Table 18.3.1. … See also Dunster (1999), Atia et al. (2014) and Temme (2015, Chapter 32).
    18: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • R. Becker and F. Sauter (1964) Electromagnetic Fields and Interactions. Vol. I, Blaisdell, New York.
  • R. Bellman (1961) A Brief Introduction to Theta Functions. Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York.
  • 19: Bibliography
  • C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985) Chapter 16 of Ramanujan’s second notebook: Theta-functions and q -series. Mem. Amer. Math. Soc. 53 (315), pp. v+85.
  • N. I. Akhiezer (2021) The classical moment problem and some related questions in analysis. Classics in Applied Mathematics, Vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • V. I. Arnold (1997) Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, New York.
  • 20: 23.22 Methods of Computation
    §23.22 Methods of Computation
    §23.22(i) Function Values
    For ( z ) we apply (23.6.2) and (23.6.5), generating all needed values of the theta functions by the methods described in §20.14. … The determination of suitable generators 2 ω 1 and 2 ω 3 is the classical inversion problem (Whittaker and Watson (1927, §21.73), McKean and Moll (1999, §2.12); see also §20.9(i) and McKean and Moll (1999, §2.16)). …