About the Project

asymptotic expansions for large order

AdvancedHelp

(0.011 seconds)

21—30 of 64 matching pages

21: 16.11 Asymptotic Expansions
§16.11 Asymptotic Expansions
§16.11(i) Formal Series
§16.11(ii) Expansions for Large Variable
§16.11(iii) Expansions for Large Parameters
Asymptotic expansions for the polynomials F q p + 2 ( r , r + a 0 , 𝐚 ; 𝐛 ; z ) as r through integer values are given in Fields and Luke (1963b, a) and Fields (1965).
22: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • 23: 25.11 Hurwitz Zeta Function
    The function ζ ( s , a ) was introduced in Hurwitz (1882) and defined by the series expansionFor other series expansions similar to (25.11.10) see Coffey (2008). …
    §25.11(xii) a -Asymptotic Behavior
    As a in the sector | ph a | π δ ( < π ) , with s ( 1 ) and δ fixed, we have the asymptotic expansionSimilarly, as a in the sector | ph a | 1 2 π δ ( < 1 2 π ) , …
    24: 10.68 Modulus and Phase Functions
    §10.68(iii) Asymptotic Expansions for Large Argument
    10.68.16 M ν ( x ) = e x / 2 ( 2 π x ) 1 2 ( 1 μ 1 8 2 1 x + ( μ 1 ) 2 256 1 x 2 ( μ 1 ) ( μ 2 + 14 μ 399 ) 6144 2 1 x 3 + O ( 1 x 4 ) ) ,
    10.68.17 ln M ν ( x ) = x 2 1 2 ln ( 2 π x ) μ 1 8 2 1 x ( μ 1 ) ( μ 25 ) 384 2 1 x 3 ( μ 1 ) ( μ 13 ) 128 1 x 4 + O ( 1 x 5 ) ,
    10.68.18 θ ν ( x ) = x 2 + ( 1 2 ν 1 8 ) π + μ 1 8 2 1 x + μ 1 16 1 x 2 ( μ 1 ) ( μ 25 ) 384 2 1 x 3 + O ( 1 x 5 ) .
    10.68.20 ln N ν ( x ) = x 2 + 1 2 ln ( π 2 x ) + μ 1 8 2 1 x + ( μ 1 ) ( μ 25 ) 384 2 1 x 3 ( μ 1 ) ( μ 13 ) 128 1 x 4 + O ( 1 x 5 ) ,
    25: 13.9 Zeros
    where n is a large positive integer, and the logarithm takes its principal value (§4.2(i)). … where n is a large positive integer. … where n is a large positive integer. …
    26: Bibliography P
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function. Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • R. B. Paris (2003) The asymptotic expansion of a generalised incomplete gamma function. J. Comput. Appl. Math. 151 (2), pp. 297–306.
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • 27: 2.11 Remainder Terms; Stokes Phenomenon
    §2.11(i) Numerical Use of Asymptotic Expansions
    In order to guard against this kind of error remaining undetected, the wanted function may need to be computed by another method (preferably nonasymptotic) for the smallest value of the (large) asymptotic variable x that is intended to be used. … For second-order differential equations, see Olde Daalhuis and Olver (1995a), Olde Daalhuis (1995, 1996), and Murphy and Wood (1997). …
    28: 12.11 Zeros
    §12.11(ii) Asymptotic Expansions of Large Zeros
    When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
    §12.11(iii) Asymptotic Expansions for Large Parameter
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). For example, let the s th real zeros of U ( a , x ) and U ( a , x ) , counted in descending order away from the point z = 2 a , be denoted by u a , s and u a , s , respectively. …
    29: 15.12 Asymptotic Approximations
    §15.12(i) Large Variable
    §15.12(ii) Large c
    As λ , … For this result and an extension to an asymptotic expansion with error bounds see Jones (2001). … For other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
    30: 11.9 Lommel Functions
    and …
    §11.9(ii) Expansions in Series of Bessel Functions
    §11.9(iii) Asymptotic Expansion
    For fixed μ and ν , … For uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). …