About the Project

Zelle login 1(205-892-1862) Zelle login error

AdvancedHelp

(0.004 seconds)

11—20 of 837 matching pages

11: 12.7 Relations to Other Functions
§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
12.7.6 U ( n + 1 2 , z ) = D n 1 ( z ) = π 2 ( 1 ) n n ! e 1 4 z 2 d n ( e 1 2 z 2 erfc ( z / 2 ) ) d z n , n = 0 , 1 , 2 , ,
12.7.7 U ( n + 1 2 , z ) = e 1 4 z 2 𝐻ℎ n ( z ) = π  2 1 2 ( n 1 ) e 1 4 z 2 i n erfc ( z / 2 ) , n = 1 , 0 , 1 , .
For these, the corresponding results for U ( a , z ) with a = 2 , ± 3 , 1 2 , 3 2 , 5 2 , and the corresponding results for V ( a , z ) with a = 0 , ± 1 , ± 2 , ± 3 , 1 2 , 3 2 , 5 2 , see Miller (1955, pp. 42–43 and 77–79). …
12: 7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
Confluent Hypergeometric Functions
13: 3.1 Arithmetics and Error Measures
§3.1 Arithmetics and Error Measures
Symmetric rounding or rounding to nearest of x gives x or x + , whichever is nearer to x , with maximum relative error equal to the machine precision 1 2 ϵ M = 2 p . …
§3.1(v) Error Measures
If x 0 , the relative error is … The mollified error is …
14: 7.4 Symmetry
7.4.1 erf ( z ) = erf ( z ) ,
7.4.2 erfc ( z ) = 2 erfc ( z ) ,
f ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 i f ( z ) ,
g ( i z ) = ( 1 / 2 ) e 1 4 π i 1 2 π i z 2 + i g ( z ) .
f ( z ) = 2 cos ( 1 4 π + 1 2 π z 2 ) f ( z ) ,
15: 7.5 Interrelations
§7.5 Interrelations
7.5.1 F ( z ) = 1 2 i π ( e z 2 w ( z ) ) = 1 2 i π e z 2 erf ( i z ) .
7.5.8 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) erf ζ .
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .
16: 7.12 Asymptotic Expansions
§7.12(i) Complementary Error Function
For these and other error bounds see Olver (1997b, pp. 109–112), with α = 1 2 and z replaced by z 2 ; compare (7.11.2). … (Note that some of these re-expansions themselves involve the complementary error function.) … as z in | ph z | 1 2 π δ ( < 1 2 π ) . … where, for n = 0 , 1 , 2 , and | ph z | < 1 4 π , …
17: 13.11 Series
13.11.2 M ( a , b , z ) = Γ ( b a 1 2 ) e 1 2 z ( 1 4 z ) a b + 1 2 s = 0 ( 1 ) s ( 2 b 2 a 1 ) s ( b 2 a ) s ( b a 1 2 + s ) ( b ) s s ! I b a 1 2 + s ( 1 2 z ) , b a + 1 2 , b 0 , 1 , 2 , .
A 0 = 1 ,
A 1 = 0 ,
A 2 = 1 2 b ,
( n + 1 ) A n + 1 = ( n + b 1 ) A n 1 + ( 2 a b ) A n 2 , n = 2 , 3 , 4 , .
18: 7.20 Mathematical Applications
§7.20(i) Asymptotics
For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). … Furthermore, because d y / d x = tan ( 1 2 π t 2 ) , the angle between the x -axis and the tangent to the spiral at P ( t ) is given by 1 2 π t 2 . …
§7.20(iii) Statistics
19: 13.6 Relations to Other Functions
§13.6(ii) Incomplete Gamma Functions
Special cases are the error functions
13.6.7 M ( 1 2 , 3 2 , z 2 ) = π 2 z erf ( z ) ,
For the definition of F 0 2 ( a , a b + 1 ; ; z 1 ) when neither a nor a b + 1 is a nonpositive integer see §16.5. …
20: 12.13 Sums
12.13.2 U ( a , x + y ) = e 1 2 x y 1 4 y 2 m = 0 ( a 1 2 m ) y m U ( a + m , x ) ,
12.13.3 V ( a , x + y ) = e 1 2 x y + 1 4 y 2 m = 0 ( a 1 2 m ) y m V ( a m , x ) ,
12.13.5 U ( a , x cos t + y sin t ) = e 1 4 ( x sin t y cos t ) 2 m = 0 ( a 1 2 m ) ( tan t ) m U ( m + a , x ) U ( m 1 2 , y ) , a 1 2 , 0 t 1 4 π .
12.13.6 n ! U ( n + 1 2 , z ) = i n e 1 2 z 2 erfc ( z / 2 ) U ( n 1 2 , i z ) + m = 1 1 2 n + 1 2 U ( 2 m n 1 2 , z ) , n = 0 , 1 , 2 , .
For erfc see §7.2(i). …