About the Project

Weber transform

AdvancedHelp

(0.002 seconds)

11—19 of 19 matching pages

11: Bibliography M
  • J. P. McClure and R. Wong (1978) Explicit error terms for asymptotic expansions of Stieltjes transforms. J. Inst. Math. Appl. 22 (2), pp. 129–145.
  • J. C. P. Miller (1952) On the choice of standard solutions to Weber’s equation. Proc. Cambridge Philos. Soc. 48, pp. 428–435.
  • J. C. P. Miller (Ed.) (1955) Tables of Weber Parabolic Cylinder Functions. Her Majesty’s Stationery Office, London.
  • A. E. Milne, P. A. Clarkson, and A. P. Bassom (1997) Bäcklund transformations and solution hierarchies for the third Painlevé equation. Stud. Appl. Math. 98 (2), pp. 139–194.
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • 12: 10.9 Integral Representations
    10.9.3 Y 0 ( z ) = 4 π 2 0 1 2 π cos ( z cos θ ) ( γ + ln ( 2 z sin 2 θ ) ) d θ ,
    10.9.7 Y ν ( z ) = 1 π 0 π sin ( z sin θ ν θ ) d θ 1 π 0 ( e ν t + e ν t cos ( ν π ) ) e z sinh t d t , | ph z | < 1 2 π .
    Y ν ( x ) = 2 π 0 cos ( x cosh t 1 2 ν π ) cosh ( ν t ) d t , | ν | < 1 , x > 0 .
    Y 0 ( x ) = 2 π 0 cos ( x cosh t ) d t , x > 0 .
    13: 1.17 Integral and Series Representations of the Dirac Delta
    Integral representation (1.17.12_1), (1.17.12_2) is the equivalent of the transform pairs, (1.14.9) & (1.14.11), (1.14.10) & (1.14.12), respectively. … See Arfken and Weber (2005, Eq. (11.59)) and Konopinski (1981, p. 242). … For (1.17.25) see Arfken and Weber (2005, p. 792). …
    14: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • 15: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • I. Ye. Kireyeva and K. A. Karpov (1961) Tables of Weber functions. Vol. I. Mathematical Tables Series, Vol. 15, Pergamon Press, London-New York.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 16: Bibliography
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • 17: 10.74 Methods of Computation
    Then J n ( x ) and Y n ( x ) can be generated by either forward or backward recurrence on n when n < x , but if n > x then to maintain stability J n ( x ) has to be generated by backward recurrence on n , and Y n ( x ) has to be generated by forward recurrence on n . …
    Hankel Transform
    Spherical Bessel Transform
    The spherical Bessel transform is the Hankel transform (10.22.76) in the case when ν is half an odd positive integer. …
    Kontorovich–Lebedev Transform
    18: 32.10 Special Function Solutions
    Solutions for other values of α are derived from w ( z ; ± 1 2 ) by application of the Bäcklund transformations (32.7.1) and (32.7.2). …
    32.10.14 ϕ ( z ) = z ν ( C 1 J ν ( ζ ) + C 2 Y ν ( ζ ) ) ,
    19: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • N. Hale and A. Townsend (2016) A fast FFT-based discrete Legendre transform. IMA J. Numer. Anal. 36 (4), pp. 1670–1684.
  • R. A. Handelsman and J. S. Lew (1970) Asymptotic expansion of Laplace transforms near the origin. SIAM J. Math. Anal. 1 (1), pp. 118–130.
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • P. Hillion (1997) Diffraction and Weber functions. SIAM J. Appl. Math. 57 (6), pp. 1702–1715.