About the Project

SL%282%2CZ%29 bilinear transformation

AdvancedHelp

(0.004 seconds)

1—10 of 821 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 23.15 Definitions
Also 𝒜 denotes a bilinear transformation on τ , given by …The set of all bilinear transformations of this form is denoted by SL ( 2 , ) (Serre (1973, p. 77)). A modular function f ( τ ) is a function of τ that is meromorphic in the half-plane τ > 0 , and has the property that for all 𝒜 SL ( 2 , ) , or for all 𝒜 belonging to a subgroup of SL ( 2 , ) , …(Some references refer to 2 as the level). …
3: 23.18 Modular Transformations
§23.18 Modular Transformations
and λ ( τ ) is a cusp form of level zero for the corresponding subgroup of SL ( 2 , ) . … J ( τ ) is a modular form of level zero for SL ( 2 , ) . …
23.18.5 η ( 𝒜 τ ) = ε ( 𝒜 ) ( i ( c τ + d ) ) 1 / 2 η ( τ ) ,
Note that η ( τ ) is of level 1 2 . …
4: 15.17 Mathematical Applications
The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations. … First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform1.14(ii)) or as a specialization of a group Fourier transform. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). … By considering, as a group, all analytic transformations of a basis of solutions under analytic continuation around all paths on the Riemann sheet, we obtain the monodromy group. …
5: Bibliography F
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniĭ funkcii w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • A. S. Fokas and Y. C. Yortsos (1981) The transformation properties of the sixth Painlevé equation and one-parameter families of solutions. Lett. Nuovo Cimento (2) 30 (17), pp. 539–544.
  • P. J. Forrester and N. S. Witte (2004) Application of the τ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • 6: 26.12 Plane Partitions
    The number of self-complementary plane partitions in B ( 2 r , 2 s , 2 t ) is …in B ( 2 r + 1 , 2 s , 2 t ) it is …in B ( 2 r + 1 , 2 s + 1 , 2 t ) it is … The number of symmetric self-complementary plane partitions in B ( 2 r , 2 r , 2 t ) is …in B ( 2 r + 1 , 2 r + 1 , 2 t ) it is …
    7: 8.6 Integral Representations
    In (8.6.10)–(8.6.12), c is a real constant and the path of integration is indented (if necessary) so that in the case of (8.6.10) it separates the poles of the gamma function from the pole at s = a , in the case of (8.6.11) it is to the right of all poles, and in the case of (8.6.12) it separates the poles of the gamma function from the poles at s = 0 , 1 , 2 , .
    8.6.10 γ ( a , z ) = 1 2 π i c i c + i Γ ( s ) a s z a s d s , | ph z | < 1 2 π , a 0 , 1 , 2 , ,
    8.6.12 Γ ( a , z ) = z a 1 e z Γ ( 1 a ) 1 2 π i c i c + i Γ ( s + 1 a ) π z s sin ( π s ) d s , | ph z | < 3 2 π , a 1 , 2 , 3 , .
    For collections of integral representations of γ ( a , z ) and Γ ( a , z ) see Erdélyi et al. (1953b, §9.3), Oberhettinger (1972, pp. 68–69), Oberhettinger and Badii (1973, pp. 309–312), Prudnikov et al. (1992b, §3.10), and Temme (1996b, pp. 282–283).
    8: Bibliography L
  • A. Leitner and J. Meixner (1960) Eine Verallgemeinerung der Sphäroidfunktionen. Arch. Math. 11, pp. 29–39.
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • E. Levin and D. Lubinsky (2005) Orthogonal polynomials for exponential weights x 2 ρ e 2 Q ( x ) on [ 0 , d ) . J. Approx. Theory 134 (2), pp. 199–256.
  • A. N. Lowan and W. Horenstein (1942) On the function H ( m , a , x ) = exp ( i x ) F ( m + 1 i a , 2 m + 2 ; 2 i x ) . J. Math. Phys. Mass. Inst. Tech. 21, pp. 264–283.
  • S. K. Lucas (1995) Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 269–282.
  • 9: Bibliography G
  • B. Gabutti and B. Minetti (1981) A new application of the discrete Laguerre polynomials in the numerical evaluation of the Hankel transform of a strongly decreasing even function. J. Comput. Phys. 42 (2), pp. 277–287.
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • H. Gupta (1935) A table of partitions. Proc. London Math. Soc. (2) 39, pp. 142–149.
  • H. Gupta (1937) A table of partitions (II). Proc. London Math. Soc. (2) 42, pp. 546–549.
  • 10: 24.2 Definitions and Generating Functions
    B 2 n + 1 = 0 ,
    ( 1 ) n + 1 B 2 n > 0 , n = 1 , 2 , .
    E 2 n + 1 = 0 ,
    ( 1 ) n E 2 n > 0 .
    24.2.9 E n = 2 n E n ( 1 2 ) = integer ,