About the Project

Pochhammer%20integral

AdvancedHelp

(0.002 seconds)

21—30 of 545 matching pages

21: 5.18 q -Gamma and q -Beta Functions
β–Ί
5.18.1 ( a ; q ) n = k = 0 n 1 ( 1 a ⁒ q k ) , n = 0 , 1 , 2 , ,
β–Ί
5.18.2 n ! q = 1 ⁒ ( 1 + q ) ⁒ β‹― ⁒ ( 1 + q + β‹― + q n 1 ) = ( q ; q ) n ⁒ ( 1 q ) n .
β–Ί
5.18.3 ( a ; q ) = k = 0 ( 1 a ⁒ q k ) .
β–Ί
5.18.12 B q ⁑ ( a , b ) = 0 1 t a 1 ⁒ ( t ⁒ q ; q ) ( t ⁒ q b ; q ) ⁒ d q t , 0 < q < 1 , ⁑ a > 0 , ⁑ b > 0 .
β–ΊFor q -integrals see §17.2(v).
22: 16.2 Definition and Analytic Properties
β–Ί β–Ί
16.2.3 F q p + 1 ⁑ ( m , 𝐚 𝐛 ; z ) = ( 𝐚 ) m ⁒ ( z ) m ( 𝐛 ) m ⁒ F p q + 1 ⁑ ( m , 1 m 𝐛 1 m 𝐚 ; ( 1 ) p + q z )
β–Ί
16.2.4 k = 0 m ( 𝐚 ) k ( 𝐛 ) k ⁒ z k k ! = ( 𝐚 ) m ⁒ z m ( 𝐛 ) m ⁒ m ! ⁒ F p q + 2 ⁑ ( m , 1 , 1 m 𝐛 1 m 𝐚 ; ( 1 ) p + q + 1 z ) .
β–ΊSee §16.5 for the definition of F q p ⁑ ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. … β–Ί
16.2.5 𝐅 q p ⁑ ( 𝐚 ; 𝐛 ; z ) = F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) / ( Ξ“ ⁑ ( b 1 ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q ) ) = k = 0 ( a 1 ) k ⁒ β‹― ⁒ ( a p ) k Ξ“ ⁑ ( b 1 + k ) ⁒ β‹― ⁒ Ξ“ ⁑ ( b q + k ) ⁒ z k k ! ;
23: 19.12 Asymptotic Approximations
§19.12 Asymptotic Approximations
β–ΊWith ψ ⁑ ( x ) denoting the digamma function (§5.2(i)) in this subsection, the asymptotic behavior of K ⁑ ( k ) and E ⁑ ( k ) near the singularity at k = 1 is given by the following convergent series: … β–Ί
19.12.2 E ⁑ ( k ) = 1 + 1 2 ⁒ m = 0 ( 1 2 ) m ⁒ ( 3 2 ) m ( 2 ) m ⁒ m ! ⁒ k 2 ⁒ m + 2 ⁒ ( ln ⁑ ( 1 k ) + d ⁑ ( m ) 1 ( 2 ⁒ m + 1 ) ⁒ ( 2 ⁒ m + 2 ) ) , | k | < 1 ,
β–ΊFor the asymptotic behavior of F ⁑ ( Ο• , k ) and E ⁑ ( Ο• , k ) as Ο• 1 2 ⁒ Ο€ and k 1 see Kaplan (1948, §2), Van de Vel (1969), and Karp and Sitnik (2007). … β–ΊAsymptotic approximations for Ξ  ⁑ ( Ο• , Ξ± 2 , k ) , with different variables, are given in Karp et al. (2007). …
24: 7.12 Asymptotic Expansions
β–Ί
§7.12(ii) Fresnel Integrals
β–ΊThe asymptotic expansions of C ⁑ ( z ) and S ⁑ ( z ) are given by (7.5.3), (7.5.4), and … β–ΊThey are bounded by | csc ⁑ ( 4 ⁒ ph ⁑ z ) | times the first neglected terms when 1 8 ⁒ Ο€ | ph ⁑ z | < 1 4 ⁒ Ο€ . … β–Ί
§7.12(iii) Goodwin–Staton Integral
β–ΊSee Olver (1997b, p. 115) for an expansion of G ⁑ ( z ) with bounds for the remainder for real and complex values of z .
25: 18.5 Explicit Representations
β–Ί
18.5.7 P n ( Ξ± , Ξ² ) ⁑ ( x ) = β„“ = 0 n ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( Ξ± + β„“ + 1 ) n β„“ β„“ ! ⁒ ( n β„“ ) ! ⁒ ( x 1 2 ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 2 ⁑ ( n , n + Ξ± + Ξ² + 1 Ξ± + 1 ; 1 x 2 ) ,
β–Ί
18.5.11 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) = β„“ = 0 n ( Ξ» ) β„“ ⁒ ( Ξ» ) n β„“ β„“ ! ⁒ ( n β„“ ) ! ⁒ cos ⁑ ( ( n 2 ⁒ β„“ ) ⁒ ΞΈ ) = e i ⁒ n ⁒ ΞΈ ⁒ ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( n , Ξ» 1 Ξ» n ; e 2 ⁒ i ⁒ ΞΈ ) .
β–Ί
18.5.12 L n ( Ξ± ) ⁑ ( x ) = β„“ = 0 n ( Ξ± + β„“ + 1 ) n β„“ ( n β„“ ) ! ⁒ β„“ ! ⁒ ( x ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 1 ⁑ ( n Ξ± + 1 ; x ) .
β–Ί
L 3 ( α ) ⁑ ( x ) = 1 6 ⁒ x 3 + 1 2 ⁒ ( α + 3 ) ⁒ x 2 1 2 ⁒ ( α + 2 ) 2 ⁒ x + 1 6 ⁒ ( α + 1 ) 3 ,
β–Ί
L 4 ( α ) ⁑ ( x ) = 1 24 ⁒ x 4 1 6 ⁒ ( α + 4 ) ⁒ x 3 + 1 4 ⁒ ( α + 3 ) 2 ⁒ x 2 1 6 ⁒ ( α + 2 ) 3 ⁒ x + 1 24 ⁒ ( α + 1 ) 4 .
26: 13.29 Methods of Computation
β–Ί
§13.29(iii) Integral Representations
β–ΊThe integral representations (13.4.1) and (13.4.4) can be used to compute the Kummer functions, and (13.16.1) and (13.16.5) for the Whittaker functions. … β–Ί
13.29.3 e 1 2 ⁒ z = s = 0 ( 2 ⁒ μ ) s ⁒ ( 1 2 + μ κ ) s ( 2 ⁒ μ ) 2 ⁒ s ⁒ s ! ⁒ ( z ) s ⁒ y ⁑ ( s ) ,
β–Ί β–Ί
13.29.7 z a = s = 0 ( a b + 1 ) s s ! ⁒ w ⁑ ( s ) ,
27: 18.18 Sums
β–ΊAssume also the integrals 1 1 ( f ⁑ ( x ) ) 2 ⁒ ( 1 x ) Ξ± ⁒ ( 1 + x ) Ξ² ⁒ d x and 1 1 ( f ⁑ ( x ) ) 2 ⁒ ( 1 x ) Ξ± + 1 ⁒ ( 1 + x ) Ξ² + 1 ⁒ d x converge. … β–ΊAssume also 0 ( f ⁑ ( x ) ) 2 ⁒ e x ⁒ x Ξ± ⁒ d x converges. … β–ΊAssume also ( f ⁑ ( x ) ) 2 ⁒ e x 2 ⁒ d x converges. … β–ΊFor integral representations for products implied by (18.18.8) and (18.18.9) see (18.17.5) and (18.17.6), respectively. … β–Ί
18.18.19 x n = ( Ξ± + 1 ) n ⁒ β„“ = 0 n ( n ) β„“ ( Ξ± + 1 ) β„“ ⁒ L β„“ ( Ξ± ) ⁑ ( x ) .
28: 31.11 Expansions in Series of Hypergeometric Functions
β–ΊSeries of Type II (§31.11(iv)) are expansions in orthogonal polynomials, which are useful in calculations of normalization integrals for Heun functions; see Erdélyi (1944) and §31.9(i). … β–Ί
31.11.3_1 P j 5 = ( λ ) j ⁒ ( 1 γ + λ ) j ( 1 + λ μ ) 2 ⁒ j ⁒ z λ j ⁒ F 1 2 ⁑ ( λ + j , 1 γ + λ + j 1 + λ μ + 2 ⁒ j ; 1 z ) ,
β–Ί
31.11.3_2 P j 6 = ( λ μ ) 2 ⁒ j ( 1 μ ) j ⁒ ( γ μ ) j ⁒ z μ + j ⁒ F 1 2 ⁑ ( μ j , 1 γ + μ j 1 λ + μ 2 ⁒ j ; 1 z ) .
β–Ί
31.11.12 P j 5 = ( α ) j ⁒ ( 1 γ + α ) j ( 1 + α β + ϡ ) 2 ⁒ j ⁒ z α j ⁒ F 1 2 ⁑ ( α + j , 1 γ + α + j 1 + α β + ϡ + 2 ⁒ j ; 1 z ) ,
29: 16.13 Appell Functions
β–Ί
16.13.1 F 1 ⁑ ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.2 F 2 ⁑ ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 ,
β–Ί
16.13.3 F 3 ⁑ ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ⁒ ( α ) n ⁒ ( β ) m ⁒ ( β ) n ( γ ) m + n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , max ⁑ ( | x | , | y | ) < 1 ,
β–Ί
16.13.4 F 4 ⁑ ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ⁒ ( β ) m + n ( γ ) m ⁒ ( γ ) n ⁒ m ! ⁒ n ! ⁒ x m ⁒ y n , | x | + | y | < 1 .
30: 25.5 Integral Representations
§25.5 Integral Representations
β–Ί
25.5.5 ΢ ⁑ ( s ) = s ⁒ 0 x x 1 2 x s + 1 ⁒ d x , 1 < ⁑ s < 0 .
β–Ί
25.5.7 ΞΆ ⁑ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ ( s ) 2 ⁒ m 1 + 1 Ξ“ ⁑ ( s ) ⁒ 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 ⁒ m ( 2 ⁒ m ) ! ⁒ x 2 ⁒ m 1 ) ⁒ x s 1 e x ⁒ d x , ⁑ s > ( 2 ⁒ n + 1 ) , n = 1 , 2 , 3 , .
β–Ί
25.5.19 ΞΆ ⁑ ( m + s ) = ( 1 ) m 1 ⁒ Ξ“ ⁑ ( s ) ⁒ sin ⁑ ( Ο€ ⁒ s ) Ο€ ⁒ Ξ“ ⁑ ( m + s ) ⁒ 0 ψ ( m ) ⁑ ( 1 + x ) ⁒ x s ⁒ d x , m = 1 , 2 , 3 , .
β–Ί
§25.5(iii) Contour Integrals