About the Project

Mellin transform with respect to lattice parameter

AdvancedHelp

(0.004 seconds)

11—20 of 910 matching pages

11: Bibliography W
  • P. L. Walker (2003) The analyticity of Jacobian functions with respect to the parameter k . Proc. Roy. Soc. London Ser A 459, pp. 2569–2574.
  • P. L. Walker (2009) The distribution of the zeros of Jacobian elliptic functions with respect to the parameter k . Comput. Methods Funct. Theory 9 (2), pp. 579–591.
  • X. Wang and A. K. Rathie (2013) Extension of a quadratic transformation due to Whipple with an application. Adv. Difference Equ., pp. 2013:157, 8.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • R. Wong (1979) Explicit error terms for asymptotic expansions of Mellin convolutions. J. Math. Anal. Appl. 72 (2), pp. 740–756.
  • 12: 13.10 Integrals
    §13.10(ii) Laplace Transforms
    §13.10(iii) Mellin Transforms
    For additional Mellin transforms see Erdélyi et al. (1954a, §§6.9, 7.5), Marichev (1983, pp. 283–287), and Oberhettinger (1974, §§1.13, 2.8).
    §13.10(iv) Fourier Transforms
    §13.10(v) Hankel Transforms
    13: 19.13 Integrals of Elliptic Integrals
    §19.13(i) Integration with Respect to the Modulus
    §19.13(ii) Integration with Respect to the Amplitude
    Cvijović and Klinowski (1994) contains fractional integrals (with free parameters) for F ( ϕ , k ) and E ( ϕ , k ) , together with special cases.
    §19.13(iii) Laplace Transforms
    For direct and inverse Laplace transforms for the complete elliptic integrals K ( k ) , E ( k ) , and D ( k ) see Prudnikov et al. (1992a, §3.31) and Prudnikov et al. (1992b, §§3.29 and 4.3.33), respectively.
    14: 7.7 Integral Representations
    7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
    Mellin–Barnes Integrals
    7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
    7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
    7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
    15: 8.6 Integral Representations
    Mellin–Barnes Integrals
    In (8.6.10)–(8.6.12), c is a real constant and the path of integration is indented (if necessary) so that in the case of (8.6.10) it separates the poles of the gamma function from the pole at s = a , in the case of (8.6.11) it is to the right of all poles, and in the case of (8.6.12) it separates the poles of the gamma function from the poles at s = 0 , 1 , 2 , .
    8.6.10 γ ( a , z ) = 1 2 π i c i c + i Γ ( s ) a s z a s d s , | ph z | < 1 2 π , a 0 , 1 , 2 , ,
    8.6.12 Γ ( a , z ) = z a 1 e z Γ ( 1 a ) 1 2 π i c i c + i Γ ( s + 1 a ) π z s sin ( π s ) d s , | ph z | < 3 2 π , a 1 , 2 , 3 , .
    16: 9.10 Integrals
    §9.10(v) Laplace Transforms
    For Laplace transforms of products of Airy functions see Shawagfeh (1992).
    §9.10(vi) Mellin Transform
    §9.10(vii) Stieltjes Transforms
    §9.10(ix) Compendia
    17: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). These representations can be used to derive analytic continuations of the Appell functions, including convergent series expansions for large x , large y , or both. For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
    18: 8.19 Generalized Exponential Integral
    §8.19(i) Definition and Integral Representations
    8.19.2 E p ( z ) = z p 1 z e t t p d t .
    Integral representations of Mellin–Barnes type for E p ( z ) follow immediately from (8.6.11), (8.6.12), and (8.19.1). … In Figures 8.19.28.19.5, height corresponds to the absolute value of the function and color to the phase. …
    §8.19(vi) Relation to Confluent Hypergeometric Function
    19: 18.17 Integrals
    §18.17(vii) Mellin Transforms
    Jacobi
    Ultraspherical
    Legendre
    Laguerre
    20: 5.19 Mathematical Applications
    As shown in Temme (1996b, §3.4), the results given in §5.7(ii) can be used to sum infinite series of rational functions. …
    5.19.3 S = ψ ( 1 2 ) 2 ψ ( 2 3 ) γ = 3 ln 3 2 ln 2 1 3 π 3 .
    §5.19(ii) Mellin–Barnes Integrals
    Many special functions f ( z ) can be represented as a Mellin–Barnes integral, that is, an integral of a product of gamma functions, reciprocals of gamma functions, and a power of z , the integration contour being doubly-infinite and eventually parallel to the imaginary axis at both ends. …By translating the contour parallel to itself and summing the residues of the integrand, asymptotic expansions of f ( z ) for large | z | , or small | z | , can be obtained complete with an integral representation of the error term. …