About the Project

Mellin%20transforms

AdvancedHelp

(0.007 seconds)

11—20 of 247 matching pages

11: 8.6 Integral Representations
Mellin–Barnes Integrals
8.6.10 γ ( a , z ) = 1 2 π i c i c + i Γ ( s ) a s z a s d s , | ph z | < 1 2 π , a 0 , 1 , 2 , ,
8.6.12 Γ ( a , z ) = z a 1 e z Γ ( 1 a ) 1 2 π i c i c + i Γ ( s + 1 a ) π z s sin ( π s ) d s , | ph z | < 3 2 π , a 1 , 2 , 3 , .
12: 16.15 Integral Representations and Integrals
16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). …For inverse Laplace transforms of Appell functions see Prudnikov et al. (1992b, §3.40).
13: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sidi (1985) Asymptotic expansions of Mellin transforms and analogues of Watson’s lemma. SIAM J. Math. Anal. 16 (4), pp. 896–906.
  • A. Sidi (2011) Asymptotic expansion of Mellin transforms in the complex plane. Int. J. Pure Appl. Math. 71 (3), pp. 465–480.
  • 14: 13.10 Integrals
    §13.10(ii) Laplace Transforms
    §13.10(iii) Mellin Transforms
    For additional Mellin transforms see Erdélyi et al. (1954a, §§6.9, 7.5), Marichev (1983, pp. 283–287), and Oberhettinger (1974, §§1.13, 2.8).
    §13.10(iv) Fourier Transforms
    §13.10(v) Hankel Transforms
    15: 2.3 Integrals of a Real Variable
    Assume that the Laplace transformwhere f ( α ) is the Mellin transform of f ( t ) 2.5(i)). … The integral (2.3.24) transforms into …
    §2.3(vi) Asymptotics of Mellin Transforms
    For the asymptotics of the Mellin transform f ( z ) = 0 t z 1 f ( t ) d t as z see Frenzen (1987b), Sidi (1985, 2011).
    16: 15.6 Integral Representations
    §15.6 Integral Representations
    15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
    15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
    See accompanying text
    Figure 15.6.1: t -plane. … Magnify
    17: 7.7 Integral Representations
    7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
    Mellin–Barnes Integrals
    7.7.13 f ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 s ) d s ,
    7.7.14 g ( z ) = ( 2 π ) 3 / 2 2 π i c i c + i ζ s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 s ) d s .
    7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
    18: 9.10 Integrals
    §9.10(v) Laplace Transforms
    For Laplace transforms of products of Airy functions see Shawagfeh (1992).
    §9.10(vi) Mellin Transform
    §9.10(vii) Stieltjes Transforms
    §9.10(ix) Compendia
    19: 18.17 Integrals
    §18.17(vii) Mellin Transforms
    Jacobi
    Ultraspherical
    Legendre
    Laguerre
    20: 14.17 Integrals
    §14.17(v) Laplace Transforms
    For Laplace transforms and inverse Laplace transforms involving associated Legendre functions, see Erdélyi et al. (1954a, pp. 179–181, 270–272), Oberhettinger and Badii (1973, pp. 113–118, 317–324), Prudnikov et al. (1992a, §§3.22, 3.32, and 3.33), and Prudnikov et al. (1992b, §§3.20, 3.30, and 3.31).
    §14.17(vi) Mellin Transforms
    For Mellin transforms involving associated Legendre functions see Oberhettinger (1974, pp. 69–82) and Marichev (1983, pp. 247–283), and for inverse transforms see Oberhettinger (1974, pp. 205–215).