Mehler?Fock transformation
(0.012 seconds)
1—10 of 170 matching pages
1: 1.14 Integral Transforms
§1.14 Integral Transforms
►§1.14(i) Fourier Transform
… ►§1.14(iii) Laplace Transform
… ►Fourier Transform
… ►Laplace Transform
…2: 15.14 Integrals
§15.14 Integrals
►The Mellin transform of the hypergeometric function of negative argument is given by … ►Fourier transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §§1.14 and 2.14). Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §4.21), Oberhettinger and Badii (1973, §1.19), and Prudnikov et al. (1992a, §3.37). …Hankel transforms of hypergeometric functions are given in Oberhettinger (1972, §1.17) and Erdélyi et al. (1954b, §8.17). …3: 12.16 Mathematical Applications
…
►PCFs are also used in integral transforms with respect to the parameter, and inversion formulas exist for kernels containing PCFs.
…Integral transforms and sampling expansions are considered in Jerri (1982).
4: 2.5 Mellin Transform Methods
§2.5 Mellin Transform Methods
… ►The Mellin transform of is defined by …The inversion formula is given by … ► … ►§2.5(iii) Laplace Transforms with Small Parameters
…5: 35.2 Laplace Transform
§35.2 Laplace Transform
►Definition
… ►Inversion Formula
… ►Convolution Theorem
►If is the Laplace transform of , , then is the Laplace transform of the convolution , where …6: 15.17 Mathematical Applications
…
►The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations.
…
►Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform (§1.14(ii)) or as a specialization of a group Fourier transform.
…
►Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)).
…
►By considering, as a group, all analytic transformations of a basis of solutions under analytic continuation around all paths on the Riemann sheet, we obtain the monodromy group.
…
7: 19.15 Advantages of Symmetry
…
►Symmetry in of , , and replaces the five transformations (19.7.2), (19.7.4)–(19.7.7) of Legendre’s integrals; compare (19.25.17).
Symmetry unifies the Landen transformations of §19.8(ii) with the Gauss transformations of §19.8(iii), as indicated following (19.22.22) and (19.36.9).
(19.21.12) unifies the three transformations in §19.7(iii) that change the parameter of Legendre’s third integral.
…
8: 14.31 Other Applications
…
►
§14.31(ii) Conical Functions
… ►These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …9: 16.20 Integrals and Series
…
►Extensive lists of Laplace transforms and inverse Laplace transforms of the Meijer -function are given in Prudnikov et al. (1992a, §3.40) and Prudnikov et al. (1992b, §3.38).
…