About the Project

Liouville function

AdvancedHelp

(0.003 seconds)

21—30 of 33 matching pages

21: Bibliography B
  • H. F. Baker (1995) Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge.
  • J. S. Ball (2000) Automatic computation of zeros of Bessel functions and other special functions. SIAM J. Sci. Comput. 21 (4), pp. 1458–1464.
  • W. Barrett (1981) Mathieu functions of general order: Connection formulae, base functions and asymptotic formulae. I–V. Philos. Trans. Roy. Soc. London Ser. A 301, pp. 75–162.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • J. P. Boyd and A. Natarov (1998) A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping. Stud. Appl. Math. 101 (4), pp. 433–455.
  • 22: Errata
    The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. …
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • 23: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    These are based on the Liouville normal form of (1.13.29). … The materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …Friedman (1990) provides a useful introduction to both approaches; as does the conference proceeding Amrein et al. (2005), overviewing the combination of Sturm–Liouville theory and Hilbert space theory. …
    24: 2.8 Differential Equations with a Parameter
    Many special functions satisfy an equation of the form … In Case III f ( z ) has a simple pole at z 0 and ( z z 0 ) 2 g ( z ) is analytic at z 0 . … First we apply the Liouville transformation1.13(iv)) to (2.8.1). … For connection formulas for Liouville–Green approximations across these transition points see Olver (1977b, a, 1978). … (For envelope functions for parabolic cylinder functions see §14.15(v)). …
    25: Bibliography T
  • J. G. Taylor (1978) Error bounds for the Liouville-Green approximation to initial-value problems. Z. Angew. Math. Mech. 58 (12), pp. 529–537.
  • J. G. Taylor (1982) Improved error bounds for the Liouville-Green (or WKB) approximation. J. Math. Anal. Appl. 85 (1), pp. 79–89.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • Go. Torres-Vega, J. D. Morales-Guzmán, and A. Zúñiga-Segundo (1998) Special functions in phase space: Mathieu functions. J. Phys. A 31 (31), pp. 6725–6739.
  • 26: Bibliography G
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • S. Goldstein (1927) Mathieu functions. Trans. Camb. Philos. Soc. 23, pp. 303–336.
  • D. Gómez-Ullate, N. Kamran, and R. Milson (2009) An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359 (1), pp. 352–367.
  • A. J. Guttmann and T. Prellberg (1993) Staircase polygons, elliptic integrals, Heun functions, and lattice Green functions. Phys. Rev. E 47 (4), pp. R2233–R2236.
  • 27: 1.15 Summability Methods
    A ( r , θ ) is a harmonic function in polar coordinates (1.9.27), and … can be extended to the interior of the unit circle as an analytic functionLet … Let … For α > 0 and x 0 , the Riemann-Liouville fractional integral of order α is defined by …
    28: Bibliography E
  • H. M. Edwards (1974) Riemann’s Zeta Function. Academic Press, New York-London.
  • A. Erdélyi (1941b) On Lamé functions. Philos. Mag. (7) 31, pp. 123–130.
  • A. Erdélyi (1941c) On algebraic Lamé functions. Philos. Mag. (7) 32, pp. 348–350.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 29: 2.9 Difference Equations
    Many special functions that depend on parameters satisfy a three-term linear recurrence relation
    2.9.1 w ( n + 2 ) + f ( n ) w ( n + 1 ) + g ( n ) w ( n ) = 0 , n = 0 , 1 , 2 , ,
    §2.9(iii) Other Approximations
    For asymptotic approximations to solutions of second-order difference equations analogous to the Liouville–Green (WKBJ) approximation for differential equations (§2.7(iii)) see Spigler and Vianello (1992, 1997) and Spigler et al. (1999). … These methods are particularly useful when the weight function associated with the orthogonal polynomials is not unique or not even known; see, e. …
    30: 18.36 Miscellaneous Polynomials
    These are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. … These results are proven in Everitt et al. (2004), via construction of a self-adjoint Sturm–Liouville operator which generates the L n ( k ) ( x ) polynomials, self-adjointness implying both orthogonality and completeness. … Consider the weight functionThe y ( x ) = L ^ n ( k ) ( x ) satisfy a second order Sturm–Liouville eigenvalue problem of the type illustrated in Table 18.8.1, as satisfied by classical OP’s, but now with rational, rather than polynomial coefficients: … and orthonormal with respect to the weight function