About the Project

Laplace integral

AdvancedHelp

(0.004 seconds)

21—30 of 53 matching pages

21: 1.14 Integral Transforms
§1.14 Integral Transforms
1.14.17 ( f ) ( s ) = f ( s ) = 0 e s t f ( t ) d t .
1.14.24 s f ( u ) d u = f 1 ( s ) ,
1.14.30 ( f g ) ( t ) = 0 t f ( u ) g ( t u ) d u .
§1.14(viii) Compendia
22: 2.5 Mellin Transform Methods
2.5.37 h ( ζ ) = 0 h ( t ) e ζ t d t .
2.5.38 ζ h ( ζ ) = I 1 ( x ) + I 2 ( x ) ,
2.5.45 h ( ζ ) = 0 e ζ t 1 + t d t , ζ > 0 .
2.5.49 h ( ζ ) = e ζ E 1 ( ζ ) ;
For examples in which the integral defining the Mellin transform h ( z ) does not exist for any value of z , see Wong (1989, Chapter 3), Bleistein and Handelsman (1975, Chapter 4), and Handelsman and Lew (1970).
23: 15.14 Integrals
§15.14 Integrals
Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §4.21), Oberhettinger and Badii (1973, §1.19), and Prudnikov et al. (1992a, §3.37). Inverse Laplace transforms of hypergeometric functions are given in Erdélyi et al. (1954a, §5.19), Oberhettinger and Badii (1973, §2.18), and Prudnikov et al. (1992b, §3.35). … For other integral transforms see Erdélyi et al. (1954b), Prudnikov et al. (1992b, §4.3.43), and also §15.9(ii).
24: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
11.11.11 𝐀 ν ( λ ν ) ( 2 π ν ) 1 / 2 e ν μ k = 0 ( 1 2 ) k b k ( λ ) ν k , ν , | ph ν | π 2 δ ,
25: 3.11 Approximation Techniques
3.11.26 F ( s ) = f ( s ) = 0 e s t f ( t ) d t
26: 35.2 Laplace Transform
27: 8.19 Generalized Exponential Integral
8.19.2 E p ( z ) = z p 1 z e t t p d t .
8.19.4 E p ( z ) = z p 1 e z Γ ( p ) 0 t p 1 e z t 1 + t d t , | ph z | < 1 2 π , p > 0 .
28: 3.5 Quadrature
3.5.38 G ( p ) = 0 e p t g ( t ) d t ,
3.5.39 g ( t ) = 1 2 π i σ i σ + i e t p G ( p ) d p ,
29: 7.7 Integral Representations
7.7.4 0 e a t t + z 2 d t = π a e a z 2 erfc ( a z ) , a > 0 , z > 0 .
7.7.15 0 e a t cos ( t 2 ) d t = π 2 f ( a 2 π ) , a > 0 ,
7.7.16 0 e a t sin ( t 2 ) d t = π 2 g ( a 2 π ) , a > 0 .
30: 11.6 Asymptotic Expansions
11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
11.6.4 0 z 𝐌 0 ( t ) d t + 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | 1 2 π δ ,