About the Project

Kummer equation

AdvancedHelp

(0.002 seconds)

31—39 of 39 matching pages

31: 33.14 Definitions and Basic Properties
§33.14(i) Coulomb Wave Equation
33.14.5 f ( ϵ , ; r ) = ( 2 r ) + 1 e r / κ M ( + 1 κ , 2 + 2 , 2 r / κ ) / ( 2 + 1 ) ! ,
where M κ , μ ( z ) and M ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …This is a consequence of Kummer’s transformation (§13.2(vii)). …
33.14.15 0 ϕ m , ( r ) ϕ n , ( r ) d r = δ m , n .
32: 33.2 Definitions and Basic Properties
§33.2(i) Coulomb Wave Equation
This differential equation has a regular singularity at ρ = 0 with indices + 1 and , and an irregular singularity of rank 1 at ρ = (§§2.7(i), 2.7(ii)). … where M κ , μ ( z ) and M ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and …This is a consequence of Kummer’s transformation (§13.2(vii)). … where W κ , μ ( z ) , U ( a , b , z ) are defined in §§13.14(i) and 13.2(i), …
33: 33.6 Power-Series Expansions in ρ
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
34: 17.6 ϕ 1 2 Function
17.6.1 ϕ 1 2 ( a , b c ; q , c / ( a b ) ) = ( c / a , c / b ; q ) ( c , c / ( a b ) ; q ) , | c | < | a b | .
Bailey–Daum q -Kummer Sum
§17.6(iv) Differential Equations
q -Differential Equation
(17.6.27) reduces to the hypergeometric equation (15.10.1) with the substitutions a q a , b q b , c q c , followed by lim q 1 . …
35: Bibliography
  • A. S. Abdullaev (1985) Asymptotics of solutions of the generalized sine-Gordon equation, the third Painlevé equation and the d’Alembert equation. Dokl. Akad. Nauk SSSR 280 (2), pp. 265–268 (Russian).
  • V. È. Adler (1994) Nonlinear chains and Painlevé equations. Phys. D 73 (4), pp. 335–351.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • U. M. Ascher and L. R. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • 36: 8.19 Generalized Exponential Integral
    with | ph z | π in both equations. … again with | ph z | π in both equations. … For U ( a , b , z ) see §13.2(i). …
    37: 7.18 Repeated Integrals of the Complementary Error Function
    7.18.4 d n d z n ( e z 2 erfc z ) = ( 1 ) n 2 n n ! e z 2 i n erfc ( z ) , n = 0 , 1 , 2 , .
    7.18.9 i n erfc ( z ) = e z 2 ( 1 2 n Γ ( 1 2 n + 1 ) M ( 1 2 n + 1 2 , 1 2 , z 2 ) z 2 n 1 Γ ( 1 2 n + 1 2 ) M ( 1 2 n + 1 , 3 2 , z 2 ) ) ,
    38: Bibliography C
  • R. Campbell (1955) Théorie Générale de L’Équation de Mathieu et de quelques autres Équations différentielles de la mécanique. Masson et Cie, Paris (French).
  • T. W. Chaundy (1969) Elementary Differential Equations. Clarendon Press, Oxford.
  • J. Choi and A. K. Rathie (2013) An extension of a Kummer’s quadratic transformation formula with an application. Proc. Jangjeon Math. Soc. 16 (2), pp. 229–235.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • E. A. Coddington and N. Levinson (1955) Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York-Toronto-London.
  • 39: 12.14 The Function W ( a , x )
    §12.14(i) Introduction
    In this section solutions of equation (12.2.3) are considered. This equation is important when a and z ( = x ) are real, and we shall assume this to be the case. … The differential equationFor properties of the modulus and phase functions, including differential equations and asymptotic expansions for large x , see Miller (1955, pp. 87–88). …