About the Project

Heine transformations (first, second, third)

AdvancedHelp

(0.001 seconds)

31—40 of 516 matching pages

31: 19.22 Quadratic Transformations
§19.22 Quadratic Transformations
Bartky’s Transformation
Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not. …
32: 10.22 Integrals
§10.22(v) Hankel Transform
The Hankel transform (or Bessel transform) of a function f ( x ) is defined as … For collections of Hankel transforms see Erdélyi et al. (1954b, Chapter 8) and Oberhettinger (1972). The following two formulas are generalizations of the Hankel transform. …This is the Weber transform. …
33: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • H. E. Fettis (1965) Calculation of elliptic integrals of the third kind by means of Gauss’ transformation. Math. Comp. 19 (89), pp. 97–104.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 34: 16.16 Transformations of Variables
    §16.16 Transformations of Variables
    §16.16(i) Reduction Formulas
    §16.16(ii) Other Transformations
    For quadratic transformations of Appell functions see Carlson (1976).
    35: 10.5 Wronskians and Cross-Products
    10.5.1 𝒲 { J ν ( z ) , J ν ( z ) } = J ν + 1 ( z ) J ν ( z ) + J ν ( z ) J ν 1 ( z ) = 2 sin ( ν π ) / ( π z ) ,
    10.5.2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) ,
    10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
    10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
    10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
    36: Bibliography T
  • J. D. Talman (1983) LSFBTR: A subroutine for calculating spherical Bessel transforms. Comput. Phys. Comm. 30 (1), pp. 93–99.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • E. C. Titchmarsh (1986a) Introduction to the Theory of Fourier Integrals. Third edition, Chelsea Publishing Co., New York.
  • F. Tu and Y. Yang (2013) Algebraic transformations of hypergeometric functions and automorphic forms on Shimura curves. Trans. Amer. Math. Soc. 365 (12), pp. 6697–6729.
  • 37: 19.1 Special Notation
    All derivatives are denoted by differentials, not by primes. … of the first, second, and third kinds, respectively, and Legendre’s incomplete integrals …of the first, second, and third kinds, respectively. … However, it should be noted that in Chapter 8 of Abramowitz and Stegun (1964) the notation used for elliptic integrals differs from Chapter 17 and is consistent with that used in the present chapter and the rest of the NIST Handbook and DLMF. … The first three functions are incomplete integrals of the first, second, and third kinds, and the cel function includes complete integrals of all three kinds.
    38: Bibliography K
  • B. J. King, R. V. Baier, and S. Hanish (1970) A Fortran computer program for calculating the prolate spheroidal radial functions of the first and second kind and their first derivatives. NRL Report No. 7012 Naval Res. Lab.  Washingtion, D.C..
  • B. J. King and A. L. Van Buren (1970) A Fortran computer program for calculating the prolate and oblate angle functions of the first kind and their first and second derivatives. NRL Report No. 7161 Naval Res. Lab.  Washingtion, D.C..
  • A. V. Kitaev (1994) Elliptic asymptotics of the first and second Painlevé transcendents. Uspekhi Mat. Nauk 49 (1(295)), pp. 77–140 (Russian).
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 39: 10.2 Definitions
    §10.2(ii) Standard Solutions
    Bessel Function of the First Kind
    Bessel Function of the Second Kind (Weber’s Function)
    Bessel Functions of the Third Kind (Hankel Functions)
    These solutions of (10.2.1) are denoted by H ν ( 1 ) ( z ) and H ν ( 2 ) ( z ) , and their defining properties are given by …
    40: 10.11 Analytic Continuation
    10.11.2 Y ν ( z e m π i ) = e m ν π i Y ν ( z ) + 2 i sin ( m ν π ) cot ( ν π ) J ν ( z ) .
    10.11.6 Y n ( z e m π i ) = ( 1 ) m n ( Y n ( z ) + 2 i m J n ( z ) ) ,
    H ν ( 1 ) ( z ¯ ) = H ν ( 2 ) ( z ) ¯ , H ν ( 2 ) ( z ¯ ) = H ν ( 1 ) ( z ) ¯ .