About the Project

Fine%20transformations%20%28first%2C%20second%2C%20third%29

AdvancedHelp

(0.011 seconds)

11—20 of 859 matching pages

11: 17.1 Special Notation
The main functions treated in this chapter are the basic hypergeometric (or q -hypergeometric) function ϕ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , the bilateral basic hypergeometric (or bilateral q -hypergeometric) function ψ s r ( a 1 , a 2 , , a r ; b 1 , b 2 , , b s ; q , z ) , and the q -analogs of the Appell functions Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) , Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) , Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) , and Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) . … Another function notation used is the “idem” function:
f ( χ 1 ; χ 2 , , χ n ) + idem ( χ 1 ; χ 2 , , χ n ) = j = 1 n f ( χ j ; χ 1 , χ 2 , , χ j 1 , χ j + 1 , , χ n ) .
Fine (1988) uses F ( a , b ; t : q ) for a particular specialization of a ϕ 1 2 function.
12: 18.39 Applications in the Physical Sciences
The corresponding eigenfunction transform is a generalization of the Kontorovich–Lebedev transform §10.43(v), see Faraut (1982, §IV). … This seems odd at first glance as H ^ n + 3 ( x ) is a polynomial of order n + 3 for n = 0 , 1 , 2 , , seemingly suggesting that for n = 0 , this being the first excited state, i. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. … A relativistic treatment becoming necessary as Z becomes large as corrections to the non-relativistic Schrödinger picture are of approximate order ( α Z ) 2 ( Z / 137 ) 2 , α being the dimensionless fine structure constant e 2 / ( 4 π ε 0 c ) , where c is the speed of light. … This operator may be discretized by projecting it onto the sub-space defined by the first N members, n = 0 , 1 , 2 , , N 1 , of the complete basis of (18.39.44), the eigenfunctions, may be expressed as …
13: 19.36 Methods of Computation
§19.36(ii) Quadratic Transformations
Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . … The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). … Bulirsch (1969a, b) extend Bartky’s transformation to el3 ( x , k c , p ) by expressing it in terms of the first incomplete integral, a complete integral of the third kind, and a more complicated integral to which Bartky’s method can be applied. … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
14: 17.6 ϕ 1 2 Function
Heine’s Third Transformation
Fine’s First Transformation
Fine’s Second Transformation
Fine’s Third Transformation
Rogers–Fine Identity
15: 8 Incomplete Gamma and Related
Functions
16: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ( z ) and I n 1 2 ( z ) in the sector 0 ph z 1 2 π for n = 1 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Chiccoli et al. (1988) presents a short table of E p ( x ) for p = 9 2 ( 1 ) 1 2 , 0 x 200 to 14S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: Guide to Searching the DLMF
    For example, the expression Ai 2 + Bi 2 does not occur verbatim in DLMF, but Ai 2 ( z ) + Bi 2 ( z ) and Ai 2 ( x ) + Bi 2 ( x ) do. Therefore, if your query is Ai^2+Bi^2, the system modifies the query so it will find the equations containing the latter expressions.
    Fine Points in Math Search
    For example, for the Bessel function K n ( z ) , you can write K_n(z), BesselK_n(z), BesselK(n,z), or BesselK[n,z]. Note that the first form may match other functions K than the Bessel K function, so if you are sure you want Bessel K , you might as well enter one of the other 3 forms. …
    19: 20.10 Integrals
    §20.10(i) Mellin Transforms with respect to the Lattice Parameter
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    §20.10(ii) Laplace Transforms with respect to the Lattice Parameter
    20: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1990) Tables of Fourier Transforms and Fourier Transforms of Distributions. Springer-Verlag, Berlin.
  • F. Oberhettinger (1972) Tables of Bessel Transforms. Springer-Verlag, Berlin-New York.
  • F. Oberhettinger (1974) Tables of Mellin Transforms. Springer-Verlag, Berlin-New York.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.