About the Project

Euler%E2%80%93Maclaurin

AdvancedHelp

(0.002 seconds)

11—20 of 413 matching pages

11: 24.3 Graphs
See accompanying text
Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
12: Bibliography
  • A. Abramov (1960) Tables of ln Γ ( z ) for Complex Argument. Pergamon Press, New York.
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • T. M. Apostol (1983) A proof that Euler missed: Evaluating ζ ( 2 ) the easy way. Math. Intelligencer 5 (3), pp. 59–60.
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in α -, β - and γ -Spectroscopy: 3 j -, 6 j -, 9 j -Symbols, F- and Γ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • 13: 13.2 Definitions and Basic Properties
    The first two standard solutions are: …
    13.2.18 U ( a , b , z ) = Γ ( b 1 ) Γ ( a ) z 1 b + Γ ( 1 b ) Γ ( a b + 1 ) + O ( z 2 b ) , 1 b < 2 , b 1 ,
    13.2.19 U ( a , 1 , z ) = 1 Γ ( a ) ( ln z + ψ ( a ) + 2 γ ) + O ( z ln z ) ,
    13.2.42 U ( a , b , z ) = Γ ( 1 b ) Γ ( a b + 1 ) M ( a , b , z ) + Γ ( b 1 ) Γ ( a ) z 1 b M ( a b + 1 , 2 b , z ) .
    14: 4.19 Maclaurin Series and Laurent Series
    §4.19 Maclaurin Series and Laurent Series
    In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)). …
    4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
    15: Bibliography D
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • 16: 16.15 Integral Representations and Integrals
    16.15.1 F 1 ( α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( α ) Γ ( γ α ) 0 1 u α 1 ( 1 u ) γ α 1 ( 1 u x ) β ( 1 u y ) β d u , α > 0 , ( γ α ) > 0 ,
    16.15.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = Γ ( γ ) Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β ) Γ ( γ β ) 0 1 0 1 u β 1 v β 1 ( 1 u ) γ β 1 ( 1 v ) γ β 1 ( 1 u x v y ) α d u d v , γ > β > 0 , γ > β > 0 ,
    16.15.3 F 3 ( α , α ; β , β ; γ ; x , y ) = Γ ( γ ) Γ ( β ) Γ ( β ) Γ ( γ β β ) Δ u β 1 v β 1 ( 1 u v ) γ β β 1 ( 1 u x ) α ( 1 v y ) α d u d v , ( γ β β ) > 0 , β > 0 , β > 0 ,
    16.15.4 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = Γ ( γ ) Γ ( γ ) Γ ( α ) Γ ( β ) Γ ( γ α ) Γ ( γ β ) 0 1 0 1 u α 1 v β 1 ( 1 u ) γ α 1 ( 1 v ) γ β 1 ( 1 u x ) γ + γ α 1 ( 1 v y ) γ + γ β 1 ( 1 u x v y ) α + β γ γ + 1 d u d v , γ > α > 0 , γ > β > 0 .
    17: 30.1 Special Notation
    x real variable. Except in §§30.7(iv), 30.11(ii), 30.13, and 30.14, 1 < x < 1 .
    γ 2 real parameter (positive, zero, or negative).
    The main functions treated in this chapter are the eigenvalues λ n m ( γ 2 ) and the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) , 𝖰𝗌 n m ( x , γ 2 ) , 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) , and S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 . …Meixner and Schäfke (1954) use ps , qs , Ps , Qs for 𝖯𝗌 , 𝖰𝗌 , 𝑃𝑠 , 𝑄𝑠 , respectively. … Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and …where d m n ( γ ) is a normalization constant determined by …
    18: 2.10 Sums and Sequences
    §2.10(i) EulerMaclaurin Formula
    This is the EulerMaclaurin formula. … In both expansions the remainder term is bounded in absolute value by the first neglected term in the sum, and has the same sign, provided that in the case of (2.10.7), truncation takes place at s = 2 m 1 , where m is any positive integer satisfying m 1 2 ( α + 1 ) . For extensions of the EulerMaclaurin formula to functions f ( x ) with singularities at x = a or x = n (or both) see Sidi (2004, 2012b, 2012a). …
    19: 10.32 Integral Representations
    10.32.2 I ν ( z ) = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 0 π e ± z cos θ ( sin θ ) 2 ν d θ = ( 1 2 z ) ν π 1 2 Γ ( ν + 1 2 ) 1 1 ( 1 t 2 ) ν 1 2 e ± z t d t , ν > 1 2 .
    10.32.14 K ν ( z ) = 1 2 π 2 i ( π 2 z ) 1 2 e z cos ( ν π ) i i Γ ( t ) Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) ( 2 z ) t d t , ν 1 2 , | ph z | < 3 2 π .
    In (10.32.14) the integration contour separates the poles of Γ ( t ) from the poles of Γ ( 1 2 t ν ) Γ ( 1 2 t + ν ) . …
    10.32.19 K μ ( z ) K ν ( z ) = 1 8 π i c i c + i Γ ( t + 1 2 μ + 1 2 ν ) Γ ( t + 1 2 μ 1 2 ν ) Γ ( t 1 2 μ + 1 2 ν ) Γ ( t 1 2 μ 1 2 ν ) Γ ( 2 t ) ( 1 2 z ) 2 t d t , c > 1 2 ( | μ | + | ν | ) , | ph z | < 1 2 π .
    20: 15.2 Definitions and Analytical Properties
    §15.2(i) Gauss Series
    15.2.1 F ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s ( c ) s s ! z s = 1 + a b c z + a ( a + 1 ) b ( b + 1 ) c ( c + 1 ) 2 ! z 2 + = Γ ( c ) Γ ( a ) Γ ( b ) s = 0 Γ ( a + s ) Γ ( b + s ) Γ ( c + s ) s ! z s ,
    15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
    15.2.3 𝐅 ( a , b c ; x + i 0 ) 𝐅 ( a , b c ; x i 0 ) = 2 π i Γ ( a ) Γ ( b ) ( x 1 ) c a b 𝐅 ( c a , c b c a b + 1 ; 1 x ) , x > 1 .
    In that case we are using interpretation (15.2.6) since with interpretation (15.2.5) we would obtain that F ( m , b ; m ; z ) is equal to the first m + 1 terms of the Maclaurin series for ( 1 z ) b .