About the Project

Euler%20numbers

AdvancedHelp

(0.003 seconds)

11—18 of 18 matching pages

11: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • D. E. Knuth and T. J. Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 21 (100), pp. 663–688.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 12: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • 13: Errata
    This release increments the minor version number and contains considerable additions of new material and clarifications. … These additions were facilitated by an extension of the scheme for reference numbers; with “_” introducing intermediate numbers. …
  • Subsection 15.2(ii)

    The unnumbered equation

    lim c n F ( a , b ; c ; z ) Γ ( c ) = 𝐅 ( a , b ; n ; z ) = ( a ) n + 1 ( b ) n + 1 ( n + 1 ) ! z n + 1 F ( a + n + 1 , b + n + 1 ; n + 2 ; z ) , n = 0 , 1 , 2 ,

    was added in the second paragraph. An equation number will be assigned in an expanded numbering scheme that is under current development. Additionally, the discussion following (15.2.6) was expanded.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 14: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 15: 25.5 Integral Representations
    25.5.7 ζ ( s ) = 1 2 + 1 s 1 + m = 1 n B 2 m ( 2 m ) ! ( s ) 2 m 1 + 1 Γ ( s ) 0 ( 1 e x 1 1 x + 1 2 m = 1 n B 2 m ( 2 m ) ! x 2 m 1 ) x s 1 e x d x , s > ( 2 n + 1 ) , n = 1 , 2 , 3 , .
    25.5.13 ζ ( s ) = π s / 2 s ( s 1 ) Γ ( 1 2 s ) + π s / 2 Γ ( 1 2 s ) 1 ( x s / 2 + x ( 1 s ) / 2 ) ω ( x ) x d x , s 1 ,
    In (25.5.15)–(25.5.19), 0 < s < 1 , ψ ( x ) is the digamma function, and γ is Euler’s constant (§5.2). …
    25.5.17 ζ ( 1 + s ) = sin ( π s ) π 0 ( γ + ψ ( 1 + x ) ) x s 1 d x ,
    25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .
    16: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • S. Fillebrown (1992) Faster computation of Bernoulli numbers. J. Algorithms 13 (3), pp. 431–445.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 17: Bibliography P
  • PARI-GP (free interactive system and C library)
  • K. Pearson (Ed.) (1965) Tables of the Incomplete Γ -function. Biometrika Office, Cambridge University Press, Cambridge.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • S. Porubský (1998) Voronoi type congruences for Bernoulli numbers. In Voronoi’s Impact on Modern Science. Book I, P. Engel and H. Syta (Eds.),
  • 18: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • I. Sh. Slavutskiĭ (1995) Staudt and arithmetical properties of Bernoulli numbers. Historia Sci. (2) 5 (1), pp. 69–74.
  • I. Sh. Slavutskiĭ (1999) About von Staudt congruences for Bernoulli numbers. Comment. Math. Univ. St. Paul. 48 (2), pp. 137–144.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.