About the Project

Dedekind%20sums

AdvancedHelp

(0.002 seconds)

11—20 of 429 matching pages

11: 24.20 Tables
§24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
12: Bibliography M
  • I. G. Macdonald (1972) Affine root systems and Dedekind’s η -function. Invent. Math. 15 (2), pp. 91–143.
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 13: 20 Theta Functions
    Chapter 20 Theta Functions
    14: 20.3 Graphics
    See accompanying text
    Figure 20.3.2: θ 1 ( π x , q ) , 0 x 2 , q = 0. …For q q Dedekind , θ 1 ( π x , q ) is convex in x for 0 < x < 1 . Here q Dedekind = e π y 0 = 0.19 approximately, where y = y 0 corresponds to the maximum value of Dedekind’s eta function η ( i y ) as depicted in Figure 23.16.1. Magnify
    15: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …It can be expressed as a sum over all primes p x : … the sum of the k th powers of the positive integers m n that are relatively prime to n . … is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    16: 25.12 Polylogarithms
    25.12.7 Li 2 ( e i θ ) = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 .
    The cosine series in (25.12.7) has the elementary sum
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    25.12.10 Li s ( z ) = n = 1 z n n s .
    17: 4.27 Sums
    §4.27 Sums
    For sums of trigonometric and inverse trigonometric functions see Gradshteyn and Ryzhik (2000, Chapter 1), Hansen (1975, §§14–42), Oberhettinger (1973), and Prudnikov et al. (1986a, Chapter 5).
    18: 6.16 Mathematical Applications
    The n th partial sum is given by
    6.16.2 S n ( x ) = k = 0 n 1 sin ( ( 2 k + 1 ) x ) 2 k + 1 = 1 2 0 x sin ( 2 n t ) sin t d t = 1 2 Si ( 2 n x ) + R n ( x ) ,
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    19: 26.3 Lattice Paths: Binomial Coefficients
    26.3.3 n = 0 m ( m n ) x n = ( 1 + x ) m , m = 0 , 1 , ,
    26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
    26.3.7 ( m + 1 n + 1 ) = k = n m ( k n ) , m n 0 ,
    26.3.8 ( m n ) = k = 0 n ( m n 1 + k k ) , m n 0 .
    26.3.10 ( m n ) = k = 0 n ( 1 ) n k ( m + 1 k ) , m n 0 ,
    20: 4.11 Sums
    §4.11 Sums