About the Project

Cash App Wallet Phone%E2%98%8E%EF%B8%8F%2B1%28888%E2%80%92481%E2%80%924477%29%E2%98%8E%EF%B8%8F %22Number%22

AdvancedHelp

(0.020 seconds)

11—20 of 859 matching pages

11: 29.17 Other Solutions
If (29.2.1) admits a Lamé polynomial solution E , then a second linearly independent solution F is given by
29.17.1 F ( z ) = E ( z ) i K z d u ( E ( u ) ) 2 .
They are algebraic functions of sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) , and have primitive period 8 K . … Lamé–Wangerin functions are solutions of (29.2.1) with the property that ( sn ( z , k ) ) 1 / 2 w ( z ) is bounded on the line segment from i K to 2 K + i K . …
12: 3.1 Arithmetics and Error Measures
with b 0 = 1 and all allowable choices of E , p , s , and b j . … Let E min E E max with E min < 0 and E max > 0 . For given values of E min , E max , and p , the format width in bits N of a computer word is the total number of bits: the sign (one bit), the significant bits b 1 , b 2 , , b p 1 ( p 1 bits), and the bits allocated to the exponent (the remaining N p bits). The integers p , E min , and E max are characteristics of the machine. … In the case of the normalized binary interchange formats, the representation of data for binary32 (previously single precision) ( N = 32 , p = 24 , E min = 126 , E max = 127 ), binary64 (previously double precision) ( N = 64 , p = 53 , E min = 1022 , E max = 1023 ) and binary128 (previously quad precision) ( N = 128 , p = 113 , E min = 16382 , E max = 16383 ) are as in Figure 3.1.1. …
13: 6.20 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ( x ) + ln x , x e x E 1 ( x ) , and the auxiliary functions f ( x ) and g ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Clenshaw (1962) gives Chebyshev coefficients for E 1 ( x ) ln | x | for 4 x 4 and e x E 1 ( x ) for x 4 (20D).

  • Luke (1969b, pp. 321–322) covers Ein ( x ) and Ein ( x ) for 0 x 8 (the Chebyshev coefficients are given to 20D); E 1 ( x ) for x 5 (20D), and Ei ( x ) for x 8 (15D). Coefficients for the sine and cosine integrals are given on pp. 325–327.

  • Luke (1969b, pp. 402, 410, and 415–421) gives main diagonal Padé approximations for Ein ( z ) , Si ( z ) , Cin ( z ) (valid near the origin), and E 1 ( z ) (valid for large | z | ); approximate errors are given for a selection of z -values.

  • 14: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 15: 34.5 Basic Properties: 6 j Symbol
    If any lower argument in a 6 j symbol is 0 , 1 2 , or 1 , then the 6 j symbol has a simple algebraic form. …
    34.5.6 { j 1 j 2 j 3 1 j 3 1 j 2 + 1 } = ( 1 ) J ( ( J 2 j 2 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) ( J 2 j 3 + 2 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 2 + 3 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.11 ( 2 j 1 + 1 ) ( ( J 3 + J 2 J 1 ) ( L 3 + L 2 J 1 ) 2 ( J 3 L 3 + J 2 L 2 J 1 L 1 ) ) { j 1 j 2 j 3 l 1 l 2 l 3 } = j 1 E ( j 1 + 1 ) { j 1 + 1 j 2 j 3 l 1 l 2 l 3 } + ( j 1 + 1 ) E ( j 1 ) { j 1 1 j 2 j 3 l 1 l 2 l 3 } ,
    34.5.13 E ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ( ( j 2 + j 3 + 1 ) 2 j 2 ) ( j 2 ( l 2 l 3 ) 2 ) ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
    For further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 98–99). …
    16: 24.9 Inequalities
    §24.9 Inequalities
    Except where otherwise noted, the inequalities in this section hold for n = 1 , 2 , . … (24.9.3)–(24.9.5) hold for 1 2 > x > 0 . … (24.9.6)–(24.9.7) hold for n = 2 , 3 , . …
    24.9.7 8 n π ( 4 n π e ) 2 n ( 1 + 1 12 n ) > ( 1 ) n E 2 n > 8 n π ( 4 n π e ) 2 n .
    17: 15.7 Continued Fractions
    15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
    u 2 n = ( b + n ) ( c a + n ) .
    If z < 1 2 , then
    18: 8.20 Asymptotic Expansions of E p ( z )
    §8.20 Asymptotic Expansions of E p ( z )
    8.20.1 E p ( z ) = e z z ( k = 0 n 1 ( 1 ) k ( p ) k z k + ( 1 ) n ( p ) n e z z n 1 E n + p ( z ) ) , n = 1 , 2 , 3 , .
    For an exponentially-improved asymptotic expansion of E p ( z ) see §2.11(iii). …
    A 3 ( λ ) = 1 8 λ + 6 λ 2 .
    19: 24.20 Tables
    §24.20 Tables
    Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
    20: 19.36 Methods of Computation
    where the elementary symmetric functions E s are defined by (19.19.4). If (19.36.1) is used instead of its first five terms, then the factor ( 3 r ) 1 / 6 in Carlson (1995, (2.2)) is changed to ( 3 r ) 1 / 8 . … Thompson (1997, pp. 499, 504) uses descending Landen transformations for both F ( ϕ , k ) and E ( ϕ , k ) . … If α 2 = k 2 , then the method fails, but the function can be expressed by (19.6.13) in terms of E ( ϕ , k ) , for which Neuman (1969b) uses ascending Landen transformations. … Lee (1990) compares the use of theta functions for computation of K ( k ) , E ( k ) , and K ( k ) E ( k ) , 0 k 2 1 , with four other methods. …