About the Project

Bernoulli polynomials

AdvancedHelp

(0.004 seconds)

11—20 of 51 matching pages

11: 24.9 Inequalities
§24.9 Inequalities
24.9.1 | B 2 n | > | B 2 n ( x ) | , 1 > x > 0 ,
24.9.2 ( 2 2 1 2 n ) | B 2 n | | B 2 n ( x ) B 2 n | , 1 x 0 .
24.9.4 2 ( 2 n + 1 ) ! ( 2 π ) 2 n + 1 > ( 1 ) n + 1 B 2 n + 1 ( x ) > 0 , n = 2 , 3 , ,
12: 24.12 Zeros
§24.12(i) Bernoulli Polynomials: Real Zeros
In the interval 0 x 1 the only zeros of B 2 n + 1 ( x ) , n = 1 , 2 , , are 0 , 1 2 , 1 , and the only zeros of B 2 n ( x ) B 2 n , n = 1 , 2 , , are 0 , 1 . For the interval 1 2 x < denote the zeros of B n ( x ) by x j ( n ) , j = 1 , 2 , , with … Let R ( n ) be the total number of real zeros of B n ( x ) . … B n ( x ) , n = 1 , 2 , , has no multiple zeros. …
13: 5.11 Asymptotic Expansions
5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , ,
5.11.17 G k ( a , b ) = ( a b k ) B k ( a b + 1 ) ( a ) ,
5.11.18 H k ( a , b ) = ( a b 2 k ) B 2 k ( a b + 1 ) ( a b + 1 2 ) .
14: 24.14 Sums
§24.14 Sums
§24.14(i) Quadratic Recurrence Relations
24.14.1 k = 0 n ( n k ) B k ( x ) B n k ( y ) = n ( x + y 1 ) B n 1 ( x + y ) ( n 1 ) B n ( x + y ) ,
24.14.5 k = 0 n ( n k ) E k ( h ) B n k ( x ) = 2 n B n ( 1 2 ( x + h ) ) ,
For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
15: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
For B ~ n ( x ) see §24.2(iii). …
25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25.11.20 ( 1 ) k ζ ( k ) ( s , a ) = ( ln a ) k a s ( 1 2 + a s 1 ) + k ! a 1 s r = 0 k 1 ( ln a ) r r ! ( s 1 ) k r + 1 s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k ( x + a ) s + 2 d x + k ( 2 s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 1 ( x + a ) s + 2 d x k ( k 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ( ln ( x + a ) ) k 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
16: 24.8 Series Expansions
§24.8(i) Fourier Series
24.8.1 B 2 n ( x ) = ( 1 ) n + 1 2 ( 2 n ) ! ( 2 π ) 2 n k = 1 cos ( 2 π k x ) k 2 n ,
24.8.2 B 2 n + 1 ( x ) = ( 1 ) n + 1 2 ( 2 n + 1 ) ! ( 2 π ) 2 n + 1 k = 1 sin ( 2 π k x ) k 2 n + 1 .
24.8.3 B n ( x ) = n ! ( 2 π i ) n k = k 0 e 2 π i k x k n .
§24.8(ii) Other Series
17: 24.7 Integral Representations
§24.7(ii) Bernoulli and Euler Polynomials
24.7.7 B 2 n ( x ) = ( 1 ) n + 1 2 n 0 cos ( 2 π x ) e 2 π t cosh ( 2 π t ) cos ( 2 π x ) t 2 n 1 d t , n = 1 , 2 , ,
24.7.8 B 2 n + 1 ( x ) = ( 1 ) n + 1 ( 2 n + 1 ) 0 sin ( 2 π x ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t .
24.7.11 B n ( x ) = 1 2 π i c i c + i ( x + t ) n ( π sin ( π t ) ) 2 d t , 0 < c < 1 .
18: 25.2 Definition and Expansions
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
For B 2 k see §24.2(i), and for B ~ n ( x ) see §24.2(iii). …
19: 17.3 q -Elementary and q -Special Functions
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
q -Bernoulli Polynomials
17.3.7 β n ( x , q ) = ( 1 q ) 1 n r = 0 n ( 1 ) r ( n r ) r + 1 ( 1 q r + 1 ) q r x .
The β n ( x , q ) are, in fact, rational functions of q , and not necessarily polynomials. …
20: 25.16 Mathematical Applications
25.16.6 H ( s ) = ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
25.16.7 H ( s ) = 1 2 ζ ( s + 1 ) + ζ ( s ) s 1 r = 1 k ( s + 2 r 2 2 r 1 ) ζ ( 1 2 r ) ζ ( s + 2 r ) ( s + 2 k 2 k + 1 ) n = 1 1 n n B ~ 2 k + 1 ( x ) x s + 2 k + 1 d x .