About the Project

Bernoulli and Euler polynomials

AdvancedHelp

(0.005 seconds)

31—40 of 46 matching pages

31: 25.1 Special Notation
k , m , n nonnegative integers.
γ Euler’s constant (§5.2(ii)).
ψ ( x ) digamma function Γ ( x ) / Γ ( x ) except in §25.16. See §5.2(i).
B n , B n ( x ) Bernoulli number and polynomial24.2(i)).
B ~ n ( x ) periodic Bernoulli function B n ( x x ) .
32: Errata
  • Equation (5.17.5)
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) Ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k

    Originally the term z Ln Γ ( z + 1 ) was incorrectly stated as z Γ ( z + 1 ) .

    Reported 2013-08-01 by Gergő Nemes and subsequently by Nick Jones on December 11, 2013.

  • 33: Bibliography B
  • J. Brillhart (1969) On the Euler and Bernoulli polynomials. J. Reine Angew. Math. 234, pp. 45–64.
  • 34: Bibliography C
  • L. Carlitz (1953) Some congruences for the Bernoulli numbers. Amer. J. Math. 75 (1), pp. 163–172.
  • L. Carlitz (1954a) q -Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 76 (2), pp. 332–350.
  • L. Carlitz (1954b) A note on Euler numbers and polynomials. Nagoya Math. J. 7, pp. 35–43.
  • L. Carlitz (1958) Expansions of q -Bernoulli numbers. Duke Math. J. 25 (2), pp. 355–364.
  • M. Chellali (1988) Accélération de calcul de nombres de Bernoulli. J. Number Theory 28 (3), pp. 347–362 (French).
  • 35: 25.11 Hurwitz Zeta Function
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    25.11.7 ζ ( s , a ) = 1 a s + 1 ( 1 + a ) s ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k 1 ( 1 + a ) s + 2 k 1 ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) ( x + a ) s + 2 n + 1 d x , s 1 , a > 0 , n = 1 , 2 , 3 , , s > 2 n .
    36: 25.16 Mathematical Applications
    25.16.6 H ( s ) = ζ ( s ) + γ ζ ( s ) + 1 2 ζ ( s + 1 ) + r = 1 k ζ ( 1 2 r ) ζ ( s + 2 r ) + n = 1 1 n s n B ~ 2 k + 1 ( x ) x 2 k + 2 d x ,
    25.16.7 H ( s ) = 1 2 ζ ( s + 1 ) + ζ ( s ) s 1 r = 1 k ( s + 2 r 2 2 r 1 ) ζ ( 1 2 r ) ζ ( s + 2 r ) ( s + 2 k 2 k + 1 ) n = 1 1 n n B ~ 2 k + 1 ( x ) x s + 2 k + 1 d x .
    37: 2.10 Sums and Sequences
    §2.10(i) Euler–Maclaurin Formula
    As in §24.2, let B n and B n ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ( x ) the n th Bernoulli periodic function B n ( x x ) . … This is the Euler–Maclaurin formula. … From §24.12(i), (24.2.2), and (24.4.27), B ~ 2 m ( x ) B 2 m is of constant sign ( 1 ) m . …
    Example
    38: 25.2 Definition and Expansions
    25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
    25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
    39: 3.5 Quadrature
    For the Bernoulli numbers B m see §24.2(i). …
    Gauss–Legendre Formula
    In the case of Chebyshev weight functions w ( x ) = ( 1 x ) α ( 1 + x ) β on [ 1 , 1 ] , with | α | = | β | = 1 2 , the nodes x k , weights w k , and error constant γ n , are as follows: … The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). …
    40: Bibliography
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • T. Agoh and K. Dilcher (2011) Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381 (1), pp. 10–16.
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 91–99.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.