About the Project

Bernoulli

AdvancedHelp

(0.001 seconds)

31—40 of 66 matching pages

31: 17.3 q -Elementary and q -Special Functions
β–Ί
§17.3(iii) Bernoulli Polynomials; Euler and Stirling Numbers
β–Ί
q -Bernoulli Polynomials
β–Ί
17.3.7 β n ⁑ ( x , q ) = ( 1 q ) 1 n ⁒ r = 0 n ( 1 ) r ⁒ ( n r ) ⁒ r + 1 ( 1 q r + 1 ) ⁒ q r ⁒ x .
β–ΊThe Ξ² n ⁑ ( x , q ) are, in fact, rational functions of q , and not necessarily polynomials. …
32: 5.15 Polygamma Functions
β–Ί
5.15.8 ψ ⁑ ( z ) 1 z + 1 2 ⁒ z 2 + k = 1 B 2 ⁒ k z 2 ⁒ k + 1 ,
β–Ί
5.15.9 ψ ( n ) ⁑ ( z ) ( 1 ) n 1 ⁒ ( ( n 1 ) ! z n + n ! 2 ⁒ z n + 1 + k = 1 ( 2 ⁒ k + n 1 ) ! ( 2 ⁒ k ) ! ⁒ B 2 ⁒ k z 2 ⁒ k + n ) .
β–ΊFor B 2 ⁒ k see §24.2(i). …
33: 2.10 Sums and Sequences
β–ΊAs in §24.2, let B n and B n ⁑ ( x ) denote the n th Bernoulli number and polynomial, respectively, and B ~ n ⁑ ( x ) the n th Bernoulli periodic function B n ⁑ ( x x ) . … β–Ί
2.10.1 j = a n f ⁑ ( j ) = a n f ⁑ ( x ) ⁒ d x + 1 2 ⁒ f ⁑ ( a ) + 1 2 ⁒ f ⁑ ( n ) + s = 1 m 1 B 2 ⁒ s ( 2 ⁒ s ) ! ⁒ ( f ( 2 ⁒ s 1 ) ⁑ ( n ) f ( 2 ⁒ s 1 ) ⁑ ( a ) ) + a n B 2 ⁒ m B ~ 2 ⁒ m ⁑ ( x ) ( 2 ⁒ m ) ! ⁒ f ( 2 ⁒ m ) ⁑ ( x ) ⁒ d x .
β–Ί
2.10.4 S ⁑ ( n ) = 1 2 ⁒ n 2 ⁒ ln ⁑ n 1 4 ⁒ n 2 + 1 2 ⁒ n ⁒ ln ⁑ n + 1 12 ⁒ ln ⁑ n + C + s = 2 m 1 ( B 2 ⁒ s ) 2 ⁒ s ⁒ ( 2 ⁒ s 1 ) ⁒ ( 2 ⁒ s 2 ) ⁒ 1 n 2 ⁒ s 2 + R m ⁑ ( n ) ,
β–Ί
2.10.5 R m ⁑ ( n ) = n B ~ 2 ⁒ m ⁑ ( x ) B 2 ⁒ m 2 ⁒ m ⁒ ( 2 ⁒ m 1 ) ⁒ x 2 ⁒ m 1 ⁒ d x .
β–ΊFrom §24.12(i), (24.2.2), and (24.4.27), B ~ 2 ⁒ m ⁑ ( x ) B 2 ⁒ m is of constant sign ( 1 ) m . …
34: 25.6 Integer Arguments
β–Ί
§25.6(i) Function Values
β–Ί
25.6.2 ΞΆ ⁑ ( 2 ⁒ n ) = ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ | B 2 ⁒ n | , n = 1 , 2 , 3 , .
β–Ί
25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
β–Ί
25.6.6 ΞΆ ⁑ ( 2 ⁒ k + 1 ) = ( 1 ) k + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ k + 1 2 ⁒ ( 2 ⁒ k + 1 ) ! ⁒ 0 1 B 2 ⁒ k + 1 ⁑ ( t ) ⁒ cot ⁑ ( Ο€ ⁒ t ) ⁒ d t , k = 1 , 2 , 3 , .
β–Ί
25.6.15 ΞΆ ⁑ ( 2 ⁒ n ) = ( 1 ) n + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ ( 2 ⁒ n ⁒ ΞΆ ⁑ ( 1 2 ⁒ n ) ( ψ ⁑ ( 2 ⁒ n ) ln ⁑ ( 2 ⁒ Ο€ ) ) ⁒ B 2 ⁒ n ) .
35: 25.16 Mathematical Applications
β–Ί
25.16.6 H ⁑ ( s ) = ΢ ⁑ ( s ) + γ ⁒ ΢ ⁑ ( s ) + 1 2 ⁒ ΢ ⁑ ( s + 1 ) + r = 1 k ΢ ⁑ ( 1 2 ⁒ r ) ⁒ ΢ ⁑ ( s + 2 ⁒ r ) + n = 1 1 n s ⁒ n B ~ 2 ⁒ k + 1 ⁑ ( x ) x 2 ⁒ k + 2 ⁒ d x ,
β–Ί
25.16.7 H ⁑ ( s ) = 1 2 ⁒ ΢ ⁑ ( s + 1 ) + ΢ ⁑ ( s ) s 1 r = 1 k ( s + 2 ⁒ r 2 2 ⁒ r 1 ) ⁒ ΢ ⁑ ( 1 2 ⁒ r ) ⁒ ΢ ⁑ ( s + 2 ⁒ r ) ( s + 2 ⁒ k 2 ⁒ k + 1 ) ⁒ n = 1 1 n ⁒ n B ~ 2 ⁒ k + 1 ⁑ ( x ) x s + 2 ⁒ k + 1 ⁒ d x .
β–Ί
25.16.10 H ⁑ ( 2 ⁒ a ) = 1 2 ⁒ ΢ ⁑ ( 1 2 ⁒ a ) = B 2 ⁒ a 4 ⁒ a , a = 1 , 2 , 3 , .
β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . …
36: 5.17 Barnes’ G -Function (Double Gamma Function)
β–Ί
5.17.5 Ln ⁑ G ⁑ ( z + 1 ) 1 4 ⁒ z 2 + z ⁒ Ln ⁑ Ξ“ ⁑ ( z + 1 ) ( 1 2 ⁒ z ⁒ ( z + 1 ) + 1 12 ) ⁒ ln ⁑ z ln ⁑ A + k = 1 B 2 ⁒ k + 2 2 ⁒ k ⁒ ( 2 ⁒ k + 1 ) ⁒ ( 2 ⁒ k + 2 ) ⁒ z 2 ⁒ k .
β–ΊHere B 2 ⁒ k + 2 is the Bernoulli number (§24.2(i)), and A is Glaisher’s constant, given by …
37: Bibliography D
β–Ί
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • β–Ί
  • K. Dilcher (1987a) Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials. J. Approx. Theory 49 (4), pp. 321–330.
  • β–Ί
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • β–Ί
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • β–Ί
  • K. Dilcher (2002) Bernoulli Numbers and Confluent Hypergeometric Functions. In Number Theory for the Millennium, I (Urbana, IL, 2000), pp. 343–363.
  • 38: 19.30 Lengths of Plane Curves
    β–Ί
    §19.30(iii) Bernoulli’s Lemniscate
    β–ΊFor 0 ΞΈ 1 4 ⁒ Ο€ , the arclength s of Bernoulli’s lemniscate …
    39: Bibliography T
    β–Ί
  • J. W. Tanner and S. S. Wagstaff (1987) New congruences for the Bernoulli numbers. Math. Comp. 48 (177), pp. 341–350.
  • β–Ί
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • β–Ί
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • β–Ί
  • P. G. Todorov (1984) On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 104 (2), pp. 309–350.
  • 40: Bibliography H
    β–Ί
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ΞΆ ⁒ ( 2 ⁒ m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • β–Ί
  • K. Horata (1989) An explicit formula for Bernoulli numbers. Rep. Fac. Sci. Technol. Meijo Univ. 29, pp. 1–6.
  • β–Ί
  • K. Horata (1991) On congruences involving Bernoulli numbers and irregular primes. II. Rep. Fac. Sci. Technol. Meijo Univ. 31, pp. 1–8.
  • β–Ί
  • F. T. Howard (1996a) Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 162 (1-3), pp. 175–185.
  • β–Ί
  • I. Huang and S. Huang (1999) Bernoulli numbers and polynomials via residues. J. Number Theory 76 (2), pp. 178–193.