About the Project

Bernoulli%20monosplines

AdvancedHelp

(0.002 seconds)

1—10 of 144 matching pages

1: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
2: 24.17 Mathematical Applications
The functions …
Bernoulli Monosplines
M n ( x ) is a monospline of degree n , and it follows from (24.4.25) and (24.4.27) that …
3: 24.2 Definitions and Generating Functions
§24.2 Definitions and Generating Functions
§24.2(i) Bernoulli Numbers and Polynomials
§24.2(iii) Periodic Bernoulli and Euler Functions
Table 24.2.1: Bernoulli and Euler numbers.
n B n E n
4: 24.18 Physical Applications
§24.18 Physical Applications
Bernoulli polynomials appear in statistical physics (Ordóñez and Driebe (1996)), in discussions of Casimir forces (Li et al. (1991)), and in a study of quark-gluon plasma (Meisinger et al. (2002)). …
5: 24.20 Tables
§24.20 Tables
Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
6: 24.3 Graphs
See accompanying text
Figure 24.3.1: Bernoulli polynomials B n ( x ) , n = 2 , 3 , , 6 . Magnify
7: 25.11 Hurwitz Zeta Function
25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
For B ~ n ( x ) see §24.2(iii). …
25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .
8: 5.11 Asymptotic Expansions
For the Bernoulli numbers B 2 k , see §24.2(i). … Wrench (1968) gives exact values of g k up to g 20 . … where h ( ) is fixed, and B k ( h ) is the Bernoulli polynomial defined in §24.2(i). … In terms of generalized Bernoulli polynomials B n ( ) ( x ) 24.16(i)), we have for k = 0 , 1 , ,
5.11.17 G k ( a , b ) = ( a b k ) B k ( a b + 1 ) ( a ) ,
9: 24.4 Basic Properties
§24.4(ii) Symmetry
§24.4(v) Multiplication Formulas
Raabe’s Theorem
§24.4(vii) Derivatives
§24.4(ix) Relations to Other Functions
10: 24.16 Generalizations
§24.16 Generalizations
Bernoulli Numbers of the Second Kind
Degenerate Bernoulli Numbers
§24.16(ii) Character Analogs
§24.16(iii) Other Generalizations