About the Project

.2022年足球世界杯冠军_『网址:687.vii』足球比赛赌用什么app_b5p6v3_2022年12月2日6时27分38秒_3xvvl7r9d.cc

AdvancedHelp

(0.006 seconds)

21—30 of 816 matching pages

21: Bibliography O
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • F. W. J. Olver (1959) Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders. J. Res. Nat. Bur. Standards Sect. B 63B, pp. 131–169.
  • J. M. Ortega and W. C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York.
  • 22: 12.14 The Function W ( a , x )
    §12.14(vii) Relations to Other Functions
    The coefficients c 2 r and d 2 r are obtainable by equating real and imaginary parts in … follows from (12.2.3), and has solutions W ( 1 2 μ 2 , ± μ t 2 ) . …
    Positive a , 2 a < x < 2 a
    uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). …
    23: Bibliography L
  • Soo-Y. Lee (1980) The inhomogeneous Airy functions, Gi ( z )  and Hi ( z ) . J. Chem. Phys. 72 (1), pp. 332–336.
  • S. Lewanowicz (1991) Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37 (1-3), pp. 101–112.
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.
  • 24: 1.9 Calculus of a Complex Variable
    such that i 2 = 1 . … If z 1 = x 1 + i y 1 , z 2 = x 2 + i y 2 , then …provided that z 2 0 . … A contour is simple if it contains no multiple points, that is, for every pair of distinct values t 1 , t 2 of t , z ( t 1 ) z ( t 2 ) . …
    §1.9(vii) Inversion of Limits
    25: 34.3 Basic Properties: 3 j Symbol
    When any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … Even permutations of columns of a 3 j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, …
    §34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
    34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
    26: 33.13 Complex Variable and Parameters
    The functions F ( η , ρ ) , G ( η , ρ ) , and H ± ( η , ρ ) may be extended to noninteger values of by generalizing ( 2 + 1 ) ! = Γ ( 2 + 2 ) , and supplementing (33.6.5) by a formula derived from (33.2.8) with U ( a , b , z ) expanded via (13.2.42). …
    33.13.1 C ( η ) = 2 e i σ ( η ) ( π η / 2 ) Γ ( + 1 i η ) / Γ ( 2 + 2 ) ,
    33.13.2 R = ( 2 + 1 ) C ( η ) / C 1 ( η ) .
    27: 8.9 Continued Fractions
    8.9.1 Γ ( a + 1 ) e z γ ( a , z ) = 1 1 z a + 1 + z a + 2 ( a + 1 ) z a + 3 + 2 z a + 4 ( a + 2 ) z a + 5 + 3 z a + 6 , a 1 , 2 , ,
    8.9.2 z a e z Γ ( a , z ) = z 1 1 + ( 1 a ) z 1 1 + z 1 1 + ( 2 a ) z 1 1 + 2 z 1 1 + ( 3 a ) z 1 1 + 3 z 1 1 + , | ph z | < π .
    28: 16.25 Methods of Computation
    See §§3.6(vii), 3.7(iii), Olde Daalhuis and Olver (1998), Lozier (1980), and Wimp (1984, Chapters 7, 8).
    29: 18.17 Integrals
    In (18.17.21_1) the branch choice of 2 c 1 for 0 < c < 1 2 is unimportant because on the right-hand side only even powers of 2 c 1 occur after expansion of the Hermite polynomial by (18.5.13). …
    §18.17(vii) Mellin Transforms
    For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … For the generalized hypergeometric function F 2 2 see (16.2.1). … For further integrals, see Apelblat (1983, pp. 189–204), Erdélyi et al. (1954a, pp. 38–39, 94–95, 170–176, 259–261, 324), Erdélyi et al. (1954b, pp. 42–44, 271–294), Gradshteyn and Ryzhik (2000, pp. 788–806), Gröbner and Hofreiter (1950, pp. 23–30), Marichev (1983, pp. 216–247), Oberhettinger (1972, pp. 64–67), Oberhettinger (1974, pp. 83–92), Oberhettinger (1990, pp. 44–47 and 152–154), Oberhettinger and Badii (1973, pp. 103–112), Prudnikov et al. (1986b, pp. 420–617), Prudnikov et al. (1992a, pp. 419–476), and Prudnikov et al. (1992b, pp. 280–308).
    30: 18.27 q -Hahn Class
    The q -Hahn class OP’s comprise systems of OP’s { p n ( x ) } , n = 0 , 1 , , N , or n = 0 , 1 , 2 , , that are eigenfunctions of a second order q -difference operator. … (Sometimes in the literature x is replaced by q 1 2 x .) …
    §18.27(vii) Discrete q -Hermite I and II Polynomials
    18.27.25 lim q 1 h n ( ( 1 q 2 ) 1 2 x ; q ) ( 1 q 2 ) n / 2 = 2 n H n ( x ) .
    18.27.26 lim q 1 h ~ n ( ( 1 q 2 ) 1 2 x ; q ) ( 1 q 2 ) n / 2 = 2 n H n ( x ) .