About the Project

.2018年世界杯决赛裁判_『wn4.com_』1998年世界杯怎么了_w6n2c9o_2022年11月29日5时2分36秒_6ogsggucg_cc

AdvancedHelp

(0.002 seconds)

31—40 of 789 matching pages

31: 26.10 Integer Partitions: Other Restrictions
p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. …The set { n 1 | n ± j ( mod k ) } is denoted by A j , k . … It is known that for k > 3 , p ( 𝒟 k , n ) p ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). … where I 1 ( x ) is the modified Bessel function (§10.25(ii)), and …The quantity A k ( n ) is real-valued. …
32: 28.8 Asymptotic Expansions for Large q
Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
σ m 1 + s 2 3 h + 4 s 2 + 3 2 7 h 2 + 19 s 3 + 59 s 2 11 h 3 + ,
28.8.11 P m ( x ) 1 + s 2 3 h cos 2 x + 1 h 2 ( s 4 + 86 s 2 + 105 2 11 cos 4 x s 4 + 22 s 2 + 57 2 11 cos 2 x ) + ,
The approximations are expressed in terms of Whittaker functions W κ , μ ( z ) and M κ , μ ( z ) with μ = 1 4 ; compare §2.8(vi). … Subsequently the asymptotic solutions involving either elementary or Whittaker functions are identified in terms of the Floquet solutions me ν ( z , q ) 28.12(ii)) and modified Mathieu functions M ν ( j ) ( z , h ) 28.20(iii)). …
33: 3.9 Acceleration of Convergence
A transformation of a convergent sequence { s n } with limit σ into a sequence { t n } is called limit-preserving if { t n } converges to the same limit σ . … This transformation is accelerating if { s n } is a linearly convergent sequence, i. … Then the transformation of the sequence { s n } into a sequence { t n , 2 k } is given by … Then t n , 2 k = ε 2 k ( n ) . … We give a special form of Levin’s transformation in which the sequence s = { s n } of partial sums s n = j = 0 n a j is transformed into: …
34: Bibliography S
  • K. Schulten and R. G. Gordon (1976) Recursive evaluation of 3 j - and 6 j - coefficients. Comput. Phys. Comm. 11 (2), pp. 269–278.
  • R. Shail (1980) On integral representations for Lamé and other special functions. SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • R. Sips (1965) Représentation asymptotique de la solution générale de l’équation de Mathieu-Hill. Acad. Roy. Belg. Bull. Cl. Sci. (5) 51 (11), pp. 1415–1446.
  • 35: 21.1 Special Notation
    g , h positive integers.
    a j j th element of vector 𝐚 .
    diag 𝐀 Transpose of [ A 11 , A 22 , , A g g ] .
    𝐉 2 g [ 𝟎 g 𝐈 g 𝐈 g 𝟎 g ] .
    S 1 S 2 set of all elements of the form “ element of  S 1 × element of  S 2 ”.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    36: Errata
  • Chapters 1 Algebraic and Analytic Methods, 10 Bessel Functions, 14 Legendre and Related Functions, 18 Orthogonal Polynomials, 29 Lamé Functions

    Over the preceding two months, the subscript parameters of the Ferrers and Legendre functions, 𝖯 n , 𝖰 n , P n , Q n , 𝑸 n and the Laguerre polynomial, L n , were incorrectly displayed as superscripts. Reported by Roy Hughes on 2022-05-23

  • Equation (34.7.4)
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 )

    Originally the third 3 j symbol in the summation was written incorrectly as ( j 31 j 32 j 33 m 13 m 23 m 33 ) .

    Reported 2015-01-19 by Yan-Rui Liu.

  • Version 1.0.9 (August 29, 2014)
  • Equation (5.17.5)
    5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) Ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k

    Originally the term z Ln Γ ( z + 1 ) was incorrectly stated as z Γ ( z + 1 ) .

    Reported 2013-08-01 by Gergő Nemes and subsequently by Nick Jones on December 11, 2013.

  • Version 1.0.3 (Aug 29, 2011)
    37: Bibliography M
  • D. A. MacDonald (1989) The roots of J 0 ( z ) i J 1 ( z ) = 0 . Quart. Appl. Math. 47 (2), pp. 375–378.
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • D. Müller, B. G. Kelly, and J. J. O’Brien (1994) Spheroidal eigenfunctions of the tidal equation. Phys. Rev. Lett. 73 (11), pp. 1557–1560.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 38: 26.6 Other Lattice Path Numbers
    26.6.1 D ( m , n ) = k = 0 n ( n k ) ( m + n k n ) = k = 0 n 2 k ( m k ) ( n k ) .
    26.6.5 m , n = 0 D ( m , n ) x m y n = 1 1 x y x y ,
    26.6.6 n = 0 D ( n , n ) x n = 1 1 6 x + x 2 ,
    26.6.9 n = 0 r ( n ) x n = 1 x 1 6 x + x 2 2 x .
    26.6.12 C ( n ) = k = 1 n N ( n , k ) ,
    39: 28.29 Definitions and Basic Properties
    The basic solutions w I ( z , λ ) , w II ( z , λ ) are defined in the same way as in §28.2(ii) (compare (28.2.5), (28.2.6)). … where the function P ν ( z ) is π -periodic. … If ν ( 0 , 1 ) is a solution of (28.29.9), then F ν ( z ) , F ν ( z ) comprise a fundamental pair of solutions of Hill’s equation. … In the symmetric case Q ( z ) = Q ( z ) , w I ( z , λ ) is an even solution and w II ( z , λ ) is an odd solution; compare §28.2(ii). …The π -periodic or π -antiperiodic solutions are multiples of w I ( z , λ ) , w II ( z , λ ) , respectively. …
    40: Bibliography C
  • L. Carlitz (1960) Note on Nörlund’s polynomial B n ( z ) . Proc. Amer. Math. Soc. 11 (3), pp. 452–455.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • F. Cooper, A. Khare, and A. Saxena (2006) Exact elliptic compactons in generalized Korteweg-de Vries equations. Complexity 11 (6), pp. 30–34.