About the Project

.世界杯1比1_『网址:687.vii』activ足球世界杯录像_b5p6v3_wka0kcuei.com

AdvancedHelp

(0.006 seconds)

11—20 of 861 matching pages

11: 28.4 Fourier Series
For n = 0 , 1 , 2 , 3 , , … For fixed s = 1 , 2 , 3 , and fixed m = 1 , 2 , 3 , , …
§28.4(vii) Asymptotic Forms for Large m
28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
For the basic solutions w I and w II see §28.2(ii).
12: 13.2 Definitions and Basic Properties
Similarly, when a b + 1 = n , n = 0 , 1 , 2 , , … When b = n + 1 , n = 0 , 1 , 2 , , and a 0 , 1 , 2 , , … When b = n + 1 , n = 0 , 1 , 2 , , and a = m , m = 0 , 1 , 2 , , … Except when a = 0 , 1 , (polynomial cases), …
§13.2(vii) Connection Formulas
13: 24.4 Basic Properties
24.4.7 k = 1 m k n = B n + 1 ( m + 1 ) B n + 1 n + 1 ,
§24.4(vii) Derivatives
24.4.34 d d x B n ( x ) = n B n 1 ( x ) , n = 1 , 2 , ,
24.4.35 d d x E n ( x ) = n E n 1 ( x ) , n = 1 , 2 , .
Let P ( x ) denote any polynomial in x , and after expanding set ( B ( x ) ) n = B n ( x ) and ( E ( x ) ) n = E n ( x ) . …
14: 12.14 The Function W ( a , x )
Here w 1 ( a , x ) and w 2 ( a , x ) are the even and odd solutions of (12.2.3): …
§12.14(vii) Relations to Other Functions
For real μ and t oscillations occur outside the t -interval [ 1 , 1 ] . … uniformly for t [ 1 + δ , 1 δ ] , with η given by (12.10.23) and 𝒜 ~ s ( t ) given by (12.10.24). … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). …
15: 3.6 Linear Difference Equations
Miller (Bickley et al. (1952, pp. xvi–xvii)) that arbitrary “trial values” can be assigned to w N and w N + 1 , for example, 1 and 0 . … The Weber function 𝐄 n ( 1 ) satisfies …Thus the asymptotic behavior of the particular solution 𝐄 n ( 1 ) is intermediate to those of the complementary functions J n ( 1 ) and Y n ( 1 ) ; moreover, the conditions for Olver’s algorithm are satisfied. … The values of w n for n = 1 , 2 , , 10 are the wanted values of 𝐄 n ( 1 ) . …
§3.6(vii) Linear Difference Equations of Other Orders
16: 18.17 Integrals
For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … Formulas (18.17.21_2) and (18.17.21_3) are respectively the limit case c 1 2 and the special case c = 1 of (18.17.21_1). … For the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
§18.17(vii) Mellin Transforms
For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). …
17: 8.5 Confluent Hypergeometric Representations
For the confluent hypergeometric functions M , 𝐌 , U , and the Whittaker functions M κ , μ and W κ , μ , see §§13.2(i) and 13.14(i).
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
18: 12.10 Uniform Asymptotic Expansions for Large Parameter
These cases are treated in §§12.10(vii)12.10(viii). … For s = 0 , 1 , 2 , … uniformly for t [ 1 + δ , 1 δ ] . … starting with 𝖠 0 ( τ ) = 1 . … where ϕ ( ζ ) is as in (12.10.40), u k ( t ) is as in §12.10(ii), α 0 = 1 , and …
19: 26.8 Set Partitions: Stirling Numbers
where the summation is over all nonnegative integers c 1 , c 2 , , c k such that c 1 + c 2 + + c k = n k . where ( x ) n is the Pochhammer symbol: x ( x + 1 ) ( x + n 1 ) . … For n 1 , …
§26.8(vii) Asymptotic Approximations
For asymptotic approximations for s ( n + 1 , k + 1 ) and S ( n , k ) that apply uniformly for 1 k n as n see Temme (1993) and Temme (2015, Chapter 34). …
20: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • L. Infeld and T. E. Hull (1951) The factorization method. Rev. Modern Phys. 23 (1), pp. 21–68.
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.