About the Project

.世界杯足球决赛时间表_『网址:687.vii』世界杯德国的球员名单_b5p6v3_2022年11月29日4时47分38秒_mgo6cgio4

AdvancedHelp

(0.003 seconds)

11—20 of 224 matching pages

11: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • M. J. Seaton and G. Peach (1962) The determination of phases of wave functions. Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (1984) The accuracy of iterated JWBK approximations for Coulomb radial functions. Comput. Phys. Comm. 32 (2), pp. 115–119.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • R. Spigler (1980) Some results on the zeros of cylindrical functions and of their derivatives. Rend. Sem. Mat. Univ. Politec. Torino 38 (1), pp. 67–85 (Italian. English summary).
  • 12: 24.2 Definitions and Generating Functions
    24.2.3 t e x t e t 1 = n = 0 B n ( x ) t n n ! , | t | < 2 π .
    24.2.8 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! , | t | < π ,
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    11 0 5 6 0 11 2 0 11 0 11 0 55 6 11 2 1
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    13: Bibliography H
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • G. H. Hardy (1952) A Course of Pure Mathematics. 10th edition, Cambridge University Press.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • J. Humblet (1984) Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Physics 155 (2), pp. 461–493.
  • 14: Bibliography B
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • V. Bezvoda, R. Farzan, K. Segeth, and G. Takó (1986) On numerical evaluation of integrals involving Bessel functions. Apl. Mat. 31 (5), pp. 396–410.
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 15: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • E. Kamke (1977) Differentialgleichungen: Lösungsmethoden und Lösungen. Teil I. B. G. Teubner, Stuttgart (German).
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • C. Kittel (1996) Introduction to Solid State Physics. 7th Edition edition, John Wiley and Sons, New York.
  • K. S. Kölbig (1968) Algorithm 327: Dilogarithm [S22]. Comm. ACM 11 (4), pp. 270–271.
  • 16: Bibliography M
  • A. J. MacLeod (2002a) Asymptotic expansions for the zeros of certain special functions. J. Comput. Appl. Math. 145 (2), pp. 261–267.
  • C. S. Meijer (1946) On the G -function. VII, VIII. Nederl. Akad. Wetensch., Proc. 49, pp. 1063–1072, 1165–1175 = Indagationes Math. 8, 661–670, 713–723 (1946).
  • K. S. Miller and B. Ross (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York.
  • L. M. Milne-Thomson (1950) Jacobian Elliptic Function Tables. Dover Publications Inc., New York.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • 17: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). …
    12.10.23 η = 1 2 arccos t 1 2 t 1 t 2 ,
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    12.10.40 ϕ ( ζ ) = ( ζ t 2 1 ) 1 4 .
    12.10.41 t = 1 + w 1 10 w 2 + 11 350 w 3 823 63000 w 4 + 1 50653 242 55000 w 5 + , | ζ | < ( 3 4 π ) 2 3 .
    18: 25.21 Software
    §25.21(vii) Fermi–Dirac and Bose–Einstein Integrals
    19: 9.18 Tables
  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Gil et al. (2003c) tabulates the only positive zero of Gi ( z ) , the first 10 negative real zeros of Gi ( z ) and Gi ( z ) , and the first 10 complex zeros of Gi ( z ) , Gi ( z ) , Hi ( z ) , and Hi ( z ) . Precision is 11 or 12S.

  • §9.18(vii) Generalized Airy Functions
    20: 3.6 Linear Difference Equations
    In practice, however, problems of severe instability often arise and in §§3.6(ii)3.6(vii) we show how these difficulties may be overcome. …
    Table 3.6.1: Weber function w n = 𝐄 n ( 1 ) computed by Olver’s algorithm.
    n p n e n e n / ( p n p n + 1 ) w n
    11 0.29154 738 ×10¹⁰ 0.37225 201 ×10¹⁰ 0.19952 026 ×10⁻¹⁰ 0.58373 946 ×10⁻¹
    §3.6(vii) Linear Difference Equations of Other Orders
    3.6.17 a n w n + 1 b n w n = d n .
    3.6.18 a n , k w n + k + a n , k 1 w n + k 1 + + a n , 0 w n = d n ,