About the Project

.%E8%81%94%E9%80%9A%E7%9B%92%E5%AD%90%E6%80%8E%E4%B9%88%E7%9C%8B%E4%B8%96%E7%95%8C%E6%9D%AF_%E3%80%8Ewn4.com_%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B5%8C%E7%90%83%E5%B9%B3%E4%BA%86%E6%80%8E%E4%B9%88%E7%AE%97_w6n2c9o_2022%E5%B9%B411%E6%9C%8829%E6%97%A55%E6%97%B631%E5%88%8638%E7%A7%92_m2c8qeq0s

AdvancedHelp

(0.026 seconds)

21—30 of 670 matching pages

21: 26.14 Permutations: Order Notation
β–ΊAs an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … β–ΊThe permutation 35247816 has two descents: 52 and 81 . …For example, maj ( 35247816 ) = 2 + 6 = 8 . … β–ΊIn this subsection S ⁑ ( n , k ) is again the Stirling number of the second kind (§26.8), and B m is the m th Bernoulli number (§24.2(i)). … β–Ί
26.14.11 B m = m 2 m ⁒ ( 2 m 1 ) ⁒ k = 0 m 2 ( 1 ) k ⁒ ⟨ m 1 k ⟩ , m 2 .
22: 1.3 Determinants, Linear Operators, and Spectral Expansions
β–ΊSquare matices can be seen as linear operators because 𝐀 ⁒ ( Ξ± ⁒ 𝐚 + Ξ² ⁒ 𝐛 ) = Ξ± ⁒ 𝐀 ⁒ 𝐚 + Ξ² ⁒ 𝐀 ⁒ 𝐛 for all Ξ± , Ξ² β„‚ and 𝐚 , 𝐛 𝐄 n , the space of all n -dimensional vectors. … β–ΊThe adjoint of a matrix 𝐀 is the matrix 𝐀 such that ⟨ 𝐀 ⁒ 𝐚 , 𝐛 ⟩ = ⟨ 𝐚 , 𝐀 ⁒ 𝐛 ⟩ for all 𝐚 , 𝐛 𝐄 n . In the case of a real matrix 𝐀 = 𝐀 T and in the complex case 𝐀 = 𝐀 H . β–ΊReal symmetric ( 𝐀 = 𝐀 T ) and Hermitian ( 𝐀 = 𝐀 H ) matrices are self-adjoint operators on 𝐄 n . … β–ΊFor self-adjoint 𝐀 and 𝐁 , if [ 𝐀 , 𝐁 ] = 𝟎 , see (1.2.66), simultaneous eigenvectors of 𝐀 and 𝐁 always exist. …
23: 25.16 Mathematical Applications
β–Ί
25.16.2 ψ ⁑ ( x ) = x ΢ ⁑ ( 0 ) ΢ ⁑ ( 0 ) ρ x ρ ρ + o ⁑ ( 1 ) , x ,
β–Ίwhere H n is given by (25.11.33). … β–Ί H ⁑ ( s ) has a simple pole with residue ΞΆ ⁑ ( 1 2 ⁒ r ) ( = B 2 ⁒ r / ( 2 ⁒ r ) ) at each odd negative integer s = 1 2 ⁒ r , r = 1 , 2 , 3 , . … β–Ί
25.16.14 r = 1 k = 1 r 1 r ⁒ k ⁒ ( r + k ) = 5 4 ⁒ ΢ ⁑ ( 3 ) ,
β–Ί
25.16.15 r = 1 k = 1 r 1 r 2 ⁒ ( r + k ) = 3 4 ⁒ ΢ ⁑ ( 3 ) .
24: 11.11 Asymptotic Expansions of Anger–Weber Functions
β–ΊLet F 0 ⁒ ( Ξ½ ) = G 0 ⁒ ( Ξ½ ) = 1 , and for k = 1 , 2 , 3 , , … β–Ί
b 2 ⁑ ( λ ) = 4 + 300 ⁒ λ 2 + 81 ⁒ λ 4 864 ⁒ ( 1 λ 2 ) 13 / 4 .
β–ΊWhen Ξ½ is real and positive, all of (11.11.10)–(11.11.17) can be regarded as special cases of two asymptotic expansions given in Olver (1997b, pp. 352–360) for 𝐀 Ξ½ ⁑ ( Ξ» ⁒ Ξ½ ) as Ξ½ + , one being uniform for 0 < Ξ» 1 , and the other being uniform for Ξ» 1 . (Note that Olver’s definition of 𝐀 Ξ½ ⁑ ( z ) omits the factor 1 / Ο€ in (11.10.4).) … β–ΊLastly, corresponding asymptotic approximations and expansions for 𝐉 Ξ½ ⁑ ( Ξ» ⁒ Ξ½ ) and 𝐄 Ξ½ ⁑ ( Ξ» ⁒ Ξ½ ) , with 0 < Ξ» < 1 or Ξ» > 1 , follow from (11.10.15) and (11.10.16) and the corresponding asymptotic expansions for the Bessel functions J Ξ½ ⁑ ( z ) and Y Ξ½ ⁑ ( z ) ; see §10.19(ii). …
25: Bibliography M
β–Ί
  • W. Magnus, F. Oberhettinger, and R. P. Soni (1966) Formulas and Theorems for the Special Functions of Mathematical Physics. 3rd edition, Springer-Verlag, New York-Berlin.
  • β–Ί
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • β–Ί
  • J. McMahon (1894) On the roots of the Bessel and certain related functions. Ann. of Math. 9 (1-6), pp. 23–30.
  • β–Ί
  • J. Meixner (1934) Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. Lond. Math. Soc. 9, pp. 6–13 (German).
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 26: Bibliography B
    β–Ί
  • R. Barakat and E. Parshall (1996) Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy. Appl. Math. Lett. 9 (5), pp. 21–26.
  • β–Ί
  • K. Bay, W. Lay, and A. Akopyan (1997) Avoided crossings of the quartic oscillator. J. Phys. A 30 (9), pp. 3057–3067.
  • β–Ί
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • β–Ί
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • β–Ί
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 27: 15.7 Continued Fractions
    β–Ί
    15.7.1 𝐅 ⁑ ( a , b ; c ; z ) 𝐅 ⁑ ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 ⁒ z t 1 u 2 ⁒ z t 2 u 3 ⁒ z t 3 β‹― ,
    β–Ί β–Ί
    28: 25.6 Integer Arguments
    β–Ί
    ΞΆ ⁑ ( 4 ) = Ο€ 4 90 ,
    β–Ί
    25.6.2 ΞΆ ⁑ ( 2 ⁒ n ) = ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ | B 2 ⁒ n | , n = 1 , 2 , 3 , .
    β–Ί
    25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    β–Ί
    25.6.6 ΞΆ ⁑ ( 2 ⁒ k + 1 ) = ( 1 ) k + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ k + 1 2 ⁒ ( 2 ⁒ k + 1 ) ! ⁒ 0 1 B 2 ⁒ k + 1 ⁑ ( t ) ⁒ cot ⁑ ( Ο€ ⁒ t ) ⁒ d t , k = 1 , 2 , 3 , .
    β–Ί
    25.6.15 ΞΆ ⁑ ( 2 ⁒ n ) = ( 1 ) n + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ n 2 ⁒ ( 2 ⁒ n ) ! ⁒ ( 2 ⁒ n ⁒ ΞΆ ⁑ ( 1 2 ⁒ n ) ( ψ ⁑ ( 2 ⁒ n ) ln ⁑ ( 2 ⁒ Ο€ ) ) ⁒ B 2 ⁒ n ) .
    29: 22.17 Moduli Outside the Interval [0,1]
    β–Ί
    k 1 = k 1 + k 2 ,
    β–Ί
    k 1 ⁒ k 1 = k 1 + k 2 ,
    β–Ί
    22.17.6 sn ⁑ ( z , i ⁒ k ) = k 1 ⁒ sd ⁑ ( z / k 1 , k 1 ) ,
    β–Ί
    22.17.7 cn ⁑ ( z , i ⁒ k ) = cd ⁑ ( z / k 1 , k 1 ) ,
    β–Ί
    22.17.8 dn ⁑ ( z , i ⁒ k ) = nd ⁑ ( z / k 1 , k 1 ) .
    30: 3.5 Quadrature
    β–ΊIf f C 2 ⁒ m + 2 ⁑ [ a , b ] , then the remainder E n ⁑ ( f ) in (3.5.2) can be expanded in the form … β–ΊFor the Bernoulli numbers B m see §24.2(i). … β–ΊAbout 2 9 = 512 function evaluations are needed. … β–Ίwith weight function w ⁑ ( x ) , is one for which E n ⁑ ( f ) = 0 whenever f is a polynomial of degree n 1 . … β–ΊFor further information, see Mason and Handscomb (2003, Chapter 8), Davis and Rabinowitz (1984, pp. 74–92), and Clenshaw and Curtis (1960). …