About the Project

.%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA%E3%80%8Ewn4.com%E3%80%8F%E6%BE%B3%E9%97%A8%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%BA%BF%E4%B8%8A%E8%B5%8C%E5%9C%BA.%E7%9C%9F%E7%9A%84%E5%A8%81%E5%B0%BC%E6%96%AF%E8%B5%8C%E5%9C%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E5%A8%B1%E4%B9%90.%E5%A8%81%E5%B0%BC%E6%96%AF%E7%9C%9F%E4%BA%BA.%E5%A8%81%E5%B0%BC%E6%96%AF%E6%A3%8B%E7%89%8C-w6n2c9o.2022%E5%B9%B411%E6%9C%8829%E6%97%A54%E6%97%B651%E5%88%8618%E7%A7%92.q000s0soc.com

AdvancedHelp

(0.072 seconds)

21—30 of 715 matching pages

21: Bibliography F
β–Ί
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • β–Ί
  • A. M. S. Filho and G. Schwachheim (1967) Algorithm 309. Gamma function with arbitrary precision. Comm. ACM 10 (8), pp. 511–512.
  • β–Ί
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • β–Ί
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • β–Ί
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 22: Bibliography B
    β–Ί
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • β–Ί
  • R. Bo and R. Wong (1996) Asymptotic behavior of the Pollaczek polynomials and their zeros. Stud. Appl. Math. 96, pp. 307–338.
  • β–Ί
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • β–Ί
  • J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä, and M. A. Shokrollahi (2001) Irregular primes and cyclotomic invariants to 12 million. J. Symbolic Comput. 31 (1-2), pp. 8996.
  • β–Ί
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 23: Bibliography W
    β–Ί
  • X. Wang and A. K. Rathie (2013) Extension of a quadratic transformation due to Whipple with an application. Adv. Difference Equ., pp. 2013:157, 8.
  • β–Ί
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • P. Wynn (1966) Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 8 (3), pp. 264–269.
  • 24: 11.11 Asymptotic Expansions of Anger–Weber Functions
    β–ΊLet F 0 ⁒ ( Ξ½ ) = G 0 ⁒ ( Ξ½ ) = 1 , and for k = 1 , 2 , 3 , , … β–Ί
    a 2 ⁑ ( λ ) = 9 ⁒ λ 2 λ 24 ⁒ ( 1 + λ ) 7 ,
    β–Ί
    b 2 ⁑ ( λ ) = 4 + 300 ⁒ λ 2 + 81 ⁒ λ 4 864 ⁒ ( 1 λ 2 ) 13 / 4 .
    β–ΊWhen Ξ½ is real and positive, all of (11.11.10)–(11.11.17) can be regarded as special cases of two asymptotic expansions given in Olver (1997b, pp. 352–360) for 𝐀 Ξ½ ⁑ ( Ξ» ⁒ Ξ½ ) as Ξ½ + , one being uniform for 0 < Ξ» 1 , and the other being uniform for Ξ» 1 . (Note that Olver’s definition of 𝐀 Ξ½ ⁑ ( z ) omits the factor 1 / Ο€ in (11.10.4).) …
    25: Bibliography G
    β–Ί
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • β–Ί
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • β–Ί
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • β–Ί
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • β–Ί
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • 26: 1.10 Functions of a Complex Variable
    β–ΊLet C be a simple closed contour consisting of a segment 𝐴𝐡 of the real axis and a contour in the upper half-plane joining the ends of 𝐴𝐡 . Also, let f ⁑ ( z ) be analytic within C , continuous within and on C , and real on 𝐴𝐡 . … β–ΊIf f ⁑ ( z ) is analytic within a simple closed contour C , and continuous within and on C —except in both instances for a finite number of singularities within C —then …Here and elsewhere in this subsection the path C is described in the positive sense. … β–ΊIf the singularities within C are poles and f ⁑ ( z ) is analytic and nonvanishing on C , then …
    27: 12.14 The Function W ⁑ ( a , x )
    β–ΊThis equation is important when a and z ( = x ) are real, and we shall assume this to be the case. … β–ΊFor the modulus functions F ~ ⁑ ( a , x ) and G ~ ⁑ ( a , x ) see §12.14(x). … β–Ίthe branch of ph being zero when a = 0 and defined by continuity elsewhere. … β–ΊOther expansions, involving cos ⁑ ( 1 4 ⁒ x 2 ) and sin ⁑ ( 1 4 ⁒ x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i ⁒ a and z by x ⁒ e Ο€ ⁒ i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … β–ΊAiry-type uniform asymptotic expansions can be used to include either one of the turning points ± 1 . …
    28: 3.5 Quadrature
    β–Ίwhere h = b a , f C 2 ⁑ [ a , b ] , and a < ΞΎ < b . … β–ΊIf in addition f is periodic, f C k ⁑ ( ℝ ) , and the integral is taken over a period, then … β–ΊLet h = 1 2 ⁒ ( b a ) and f C 4 ⁑ [ a , b ] . … β–ΊFor further information, see Mason and Handscomb (2003, Chapter 8), Davis and Rabinowitz (1984, pp. 74–92), and Clenshaw and Curtis (1960). … β–ΊFor C functions Gauss quadrature can be very efficient. …
    29: Bibliography C
    β–Ί
  • B. C. Carlson (1977a) Elliptic integrals of the first kind. SIAM J. Math. Anal. 8 (2), pp. 231–242.
  • β–Ί
  • T. M. Cherry (1948) Expansions in terms of parabolic cylinder functions. Proc. Edinburgh Math. Soc. (2) 8, pp. 50–65.
  • β–Ί
  • G. M. Cicuta and E. Montaldi (1975) Remarks on the full asymptotic expansion of Feynman parametrized integrals. Lett. Nuovo Cimento (2) 13 (8), pp. 310–312.
  • β–Ί
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • β–Ί
  • J. N. L. Connor and D. Farrelly (1981) Molecular collisions and cusp catastrophes: Three methods for the calculation of Pearcey’s integral and its derivatives. Chem. Phys. Lett. 81 (2), pp. 306–310.
  • 30: 17.7 Special Cases of Higher Ο• s r Functions
    β–Ί
    q -Analog of Bailey’s F 1 2 ⁑ ( 1 ) Sum
    β–Ί
    q -Analog of Gauss’s F 1 2 ⁑ ( 1 ) Sum
    β–Ί
    q -Analog of Dixon’s F 2 3 ⁑ ( 1 ) Sum
    β–Ί
    Gasper–Rahman q -Analog of Watson’s F 2 3 Sum
    β–Ί
    Bailey’s Nonterminating Extension of Jackson’s Ο• 7 8 Sum