About the Project

抢庄牛牛3D游戏大厅,网上抢庄牛牛3D游戏规则,【复制打开网址:33kk55.com】正规博彩平台,在线赌博平台,抢庄牛牛3D游戏玩法介绍,真人抢庄牛牛3D游戏规则,网上真人棋牌游戏平台,真人博彩游戏平台网址YBsCyXMBsMAyNMBM

AdvancedHelp

(0.007 seconds)

11—20 of 590 matching pages

11: 10.20 Uniform Asymptotic Expansions for Large Order
In the following formulas for the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) , u k , v k are the constants defined in §9.7(i), and U k ( p ) , V k ( p ) are the polynomials in p of degree 3 k defined in §10.41(ii). … Note: Another way of arranging the above formulas for the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) would be by analogy with (12.10.42) and (12.10.46). … Each of the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) , k = 0 , 1 , 2 , , is real and infinitely differentiable on the interval < ζ < . … For numerical tables of ζ = ζ ( z ) , ( 4 ζ / ( 1 z 2 ) ) 1 4 and A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) see Olver (1962, pp. 28–42). … The equations of the curved boundaries D 1 E 1 and D 2 E 2 in the ζ -plane are given parametrically by …
12: 29.15 Fourier Series and Chebyshev Series
29.15.34 [ D 1 , D 3 , , D 2 n + 1 ] T ,
29.15.35 ( 1 1 2 k 2 ) p = 0 n D 2 p + 1 2 + 1 2 k 2 ( 1 2 D 1 2 p = 0 n 1 D 2 p + 1 D 2 p + 3 ) = 1 ,
Polynomial 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 )
When ν = 2 n + 3 , m = 0 , 1 , , n , the Fourier series (29.6.53) terminates: …
29.15.39 [ D 2 , D 4 , , D 2 n + 2 ] T ,
13: 29.6 Fourier Series
29.6.39 ( β 0 H ) D 1 + α 0 D 3 = 0 ,
29.6.40 γ p D 2 p 1 + ( β p H ) D 2 p + 1 + α p D 2 p + 3 = 0 , p 1 ,
29.6.42 ( 1 1 2 k 2 ) p = 0 D 2 p + 1 2 + 1 2 k 2 ( 1 2 D 1 2 p = 0 D 2 p + 1 D 2 p + 3 ) = 1 ,
29.6.54 ( β 0 H ) D 2 + α 0 D 4 = 0 ,
29.6.59 lim p D 2 p + 2 D 2 p = k 2 ( 1 + k ) 2 , ν 2 n + 3 , or ν = 2 n + 3 and m > n ,
14: 10.13 Other Differential Equations
10.13.7 z 2 ( z 2 ν 2 ) w ′′ + z ( z 2 3 ν 2 ) w + ( ( z 2 ν 2 ) 2 ( z 2 + ν 2 ) ) w = 0 , w = 𝒞 ν ( z ) ,
In (10.13.9)–(10.13.11) 𝒞 ν ( z ) , 𝒟 μ ( z ) are any cylinder functions of orders ν , μ , respectively, and ϑ = z ( d / d z ) .
10.13.9 z 2 w ′′′ + 3 z w ′′ + ( 4 z 2 + 1 4 ν 2 ) w + 4 z w = 0 , w = 𝒞 ν ( z ) 𝒟 ν ( z ) ,
10.13.10 z 3 w ′′′ + z ( 4 z 2 + 1 4 ν 2 ) w + ( 4 ν 2 1 ) w = 0 , w = z 𝒞 ν ( z ) 𝒟 ν ( z ) ,
10.13.11 ( ϑ 4 2 ( ν 2 + μ 2 ) ϑ 2 + ( ν 2 μ 2 ) 2 ) w + 4 z 2 ( ϑ + 1 ) ( ϑ + 2 ) w = 0 , w = 𝒞 ν ( z ) 𝒟 μ ( z ) .
15: 19.27 Asymptotic Approximations and Expansions
§19.27(iv) R D ( x , y , z )
19.27.7 R D ( x , y , z ) = 3 2 z 3 / 2 ( ln ( 8 z a + g ) 2 ) ( 1 + O ( a z ) ) , a / z 0 .
19.27.8 R D ( x , y , z ) = 3 x y z 6 x y R G ( x , y , 0 ) ( 1 + O ( z g ) ) , z / g 0 .
19.27.9 R D ( x , y , z ) = 3 x z ( y + z ) ( 1 + O ( b x ln x b ) ) , b / x 0 .
19.27.10 R D ( x , y , z ) = R D ( 0 , y , z ) 3 x h z ( 1 + O ( x h ) ) , x / h 0 .
16: 19.20 Special Cases
§19.20(iv) R D ( x , y , z )
R D ( x , x , x ) = x 3 / 2 ,
R D ( λ x , λ y , λ z ) = λ 3 / 2 R D ( x , y , z ) ,
R D ( 0 , y , y ) = 3 4 π y 3 / 2 ,
19.20.22 0 1 t 2 d t 1 t 4 = 1 3 R D ( 0 , 2 , 1 ) = ( Γ ( 3 4 ) ) 2 ( 2 π ) 1 / 2 = 0.59907 01173 67796 10371 .
17: 27.2 Functions
27.2.9 d ( n ) = d | n 1
It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
18: 19.4 Derivatives and Differential Equations
Let D k = / k . Then
19.4.8 ( k k 2 D k 2 + ( 1 3 k 2 ) D k k ) F ( ϕ , k ) = k sin ϕ cos ϕ ( 1 k 2 sin 2 ϕ ) 3 / 2 ,
19.4.9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 k 2 sin 2 ϕ .
19: 12.7 Relations to Other Functions
12.7.1 U ( 1 2 , z ) = D 0 ( z ) = e 1 4 z 2 ,
12.7.2 U ( n 1 2 , z ) = D n ( z ) = e 1 4 z 2 𝐻𝑒 n ( z ) = 2 n / 2 e 1 4 z 2 H n ( z / 2 ) , n = 0 , 1 , 2 , ,
12.7.6 U ( n + 1 2 , z ) = D n 1 ( z ) = π 2 ( 1 ) n n ! e 1 4 z 2 d n ( e 1 2 z 2 erfc ( z / 2 ) ) d z n , n = 0 , 1 , 2 , ,
For these, the corresponding results for U ( a , z ) with a = 2 , ± 3 , 1 2 , 3 2 , 5 2 , and the corresponding results for V ( a , z ) with a = 0 , ± 1 , ± 2 , ± 3 , 1 2 , 3 2 , 5 2 , see Miller (1955, pp. 42–43 and 77–79). …
20: 19.29 Reduction of General Elliptic Integrals
For example, 3. …where the arguments of the R D function are, in order, ( a b ) ( u c ) , ( b c ) ( a u ) , ( a b ) ( b c ) . … In the cubic case ( h = 3 ) the basic integrals are … If h = 3 , then the recurrence relation (Carlson (1999, (3.5))) has the special case … where …