About the Project

大学结业证书是什么学历〖办证V信ATV1819〗16d

AdvancedHelp

(0.002 seconds)

11—20 of 501 matching pages

11: 27.15 Chinese Remainder Theorem
Choose four relatively prime moduli m 1 , m 2 , m 3 , and m 4 of five digits each, for example 2 16 3 , 2 16 1 , 2 16 + 1 , and 2 16 + 3 . …
12: Bibliography Y
  • G. D. Yakovleva (1969) Tables of Airy Functions and Their Derivatives. Izdat. Nauka, Moscow (Russian).
  • H. A. Yamani and L. Fishman (1975) J -matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, pp. 410–420.
  • A. J. Yee (2004) Partitions with difference conditions and Alder’s conjecture. Proc. Natl. Acad. Sci. USA 101 (47), pp. 16417–16418.
  • D. M. Young and R. T. Gregory (1988) A Survey of Numerical Mathematics. Vol. II. Dover Publications Inc., New York.
  • 13: Bibliography Z
  • D. Zagier (1989) The Dilogarithm Function in Geometry and Number Theory. In Number Theory and Related Topics (Bombay, 1988), R. Askey and others (Eds.), Tata Inst. Fund. Res. Stud. Math., Vol. 12, pp. 231–249.
  • D. Zagier (1998) A modified Bernoulli number. Nieuw Arch. Wisk. (4) 16 (1-2), pp. 63–72.
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • D. Zeilberger and D. M. Bressoud (1985) A proof of Andrews’ q -Dyson conjecture. Discrete Math. 54 (2), pp. 201–224.
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • 14: Bibliography U
  • K. M. Urwin (1965) Integral equations for the paraboloidal wave functions. II. Quart. J. Math. Oxford Ser. (2) 16, pp. 257–262.
  • J. V. Uspensky and M. A. Heaslet (1939) Elementary Number Theory. McGraw-Hill Book Company, Inc., New York.
  • T. Uzer, J. T. Muckerman, and M. S. Child (1983) Collisions and umbilic catastrophes. The hyperbolic umbilic canonical diffraction integral. Molecular Phys. 50 (6), pp. 1215–1230.
  • 15: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    26.6.4 r ( n ) = D ( n , n ) D ( n + 1 , n 1 ) , n 1 .
    26.6.10 D ( m , n ) = D ( m , n 1 ) + D ( m 1 , n ) + D ( m 1 , n 1 ) , m , n 1 ,
    16: Bibliography S
  • K. Schulten and R. G. Gordon (1975a) Exact recursive evaluation of 3 j - and 6 j -coefficients for quantum-mechanical coupling of angular momenta. J. Mathematical Phys. 16 (10), pp. 1961–1970.
  • C. Schwartz (1961) Variational calculations of scattering. Ann. Phys. 16, pp. 36–50.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • D. M. Smith (2011) Algorithm 911: multiple-precision exponential integral and related functions. ACM Trans. Math. Software 37 (4), pp. Art. 46, 16.
  • B. Sommer and J. G. Zabolitzky (1979) On numerical Bessel transformation. Comput. Phys. Comm. 16 (3), pp. 383–387.
  • 17: 20 Theta Functions
    18: Adri B. Olde Daalhuis
    19: Bibliography I
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 20: 7.7 Integral Representations
    Integrals of the type e z 2 R ( z ) d z , where R ( z ) is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions.
    7.7.1 erfc z = 2 π e z 2 0 e z 2 t 2 t 2 + 1 d t , | ph z | 1 4 π ,
    7.7.2 w ( z ) = 1 π i e t 2 d t t z = 2 z π i 0 e t 2 d t t 2 z 2 , z > 0 .
    7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .
    In (7.7.13) and (7.7.14) the integration paths are straight lines, ζ = 1 16 π 2 z 4 , and c is a constant such that 0 < c < 1 4 in (7.7.13), and 0 < c < 3 4 in (7.7.14). …