About the Project

哪里能办日本山口学艺大学文凭毕业证【做证微W60688168】phy

AdvancedHelp

(0.002 seconds)

11—20 of 26 matching pages

11: Bibliography S
  • T. Schäfer and E. V. Shuryak (1998) Instantons in QCD. Rev. Modern Phys. 70 (2), pp. 323–425.
  • L. Schlessinger (1968) Use of analyticity in the calculation of nonrelativistic scattering amplitudes. Phys. Rev. 167, pp. 1411–1423.
  • C. Schwartz (1961) Variational calculations of scattering. Ann. Phys. 16, pp. 36–50.
  • M. J. Seaton (1983) Quantum defect theory. Rep. Prog. Phys. 46 (2), pp. 167–257.
  • D. Sornette (1998) Multiplicative processes and power laws. Phys. Rev. E 57 (4), pp. 4811–4813.
  • 12: Bibliography L
  • A. Laforgia and M. E. Muldoon (1988) Monotonicity properties of zeros of generalized Airy functions. Z. Angew. Math. Phys. 39 (2), pp. 267–271.
  • S. Lai and Y. Chiu (1990) Exact computation of the 3 - j and 6 - j symbols. Comput. Phys. Comm. 61 (3), pp. 350–360.
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • M. Lerch (1905) Einiges über den Integrallogarithmus. Monatsh. Math. Phys. 16 (1), pp. 125–134.
  • J. D. Louck (1958) New recursion relation for the Clebsch-Gordan coefficients. Phys. Rev. (2) 110 (4), pp. 815–816.
  • 13: Bibliography R
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • M. Robnik (1980) An extremum property of the n -dimensional sphere. J. Phys. A 13 (10), pp. L349–L351.
  • 14: Bibliography N
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • A. Natarajan and N. Mohankumar (1993) On the numerical evaluation of the generalised Fermi-Dirac integrals. Comput. Phys. Comm. 76 (1), pp. 48–50.
  • J. Negro, L. M. Nieto, and O. Rosas-Ortiz (2000) Confluent hypergeometric equations and related solvable potentials in quantum mechanics. J. Math. Phys. 41 (12), pp. 7964–7996.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 15: Bibliography
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • J. A. Adam (2002) The mathematical physics of rainbows and glories. Phys. Rep. 356 (4-5), pp. 229–365 (English).
  • V. È. Adler (1994) Nonlinear chains and Painlevé equations. Phys. D 73 (4), pp. 335–351.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • R. Askey (1985) Continuous Hahn polynomials. J. Phys. A 18 (16), pp. L1017–L1019.
  • 16: Bibliography D
  • G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994) Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (5), pp. 4298–4302.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • B. Deconinck and J. N. Kutz (2006) Computing spectra of linear operators using the Floquet-Fourier-Hill method. J. Comput. Phys. 219 (1), pp. 296–321.
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • A. M. Din (1981) A simple sum formula for Clebsch-Gordan coefficients. Lett. Math. Phys. 5 (3), pp. 207–211.
  • 17: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • M. Hiyama and H. Nakamura (1997) Two-center Coulomb functions. Comput. Phys. Comm. 103 (2-3), pp. 209–216.
  • L. E. Hoisington and G. Breit (1938) Calculation of Coulomb wave functions for high energies. Phys. Rev. 54 (8), pp. 627–628.
  • 18: Bibliography O
  • K. Okamoto (1981) On the τ -function of the Painlevé equations. Phys. D 2 (3), pp. 525–535.
  • A. B. Olde Daalhuis (2005a) Hyperasymptotics for nonlinear ODEs. I. A Riccati equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2060), pp. 2503–2520.
  • A. B. Olde Daalhuis (2005b) Hyperasymptotics for nonlinear ODEs. II. The first Painlevé equation and a second-order Riccati equation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2062), pp. 3005–3021.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • F. W. J. Olver (1983) Error Analysis of Complex Arithmetic. In Computational Aspects of Complex Analysis (Braunlage, 1982), H. Werner, L. Wuytack, E. Ng, and H. J. Bünger (Eds.), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 102, pp. 279–292.
  • 19: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • M. Edwards, D. A. Griggs, P. L. Holman, C. W. Clark, S. L. Rolston, and W. D. Phillips (1999) Properties of a Raman atom-laser output coupler. J. Phys. B 32 (12), pp. 2935–2950.
  • Á. Elbert and A. Laforgia (2000) Further results on McMahon’s asymptotic approximations. J. Phys. A 33 (36), pp. 6333–6341.
  • N. Ercolani and A. Sinha (1989) Monopoles and Baker functions. Comm. Math. Phys. 125 (3), pp. 385–416.
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • 20: Bibliography M
  • R. P. Martinez-y-Romero (2000) Relativistic hydrogen atom revisited. Amer. J. Phys. 68, pp. 1050–1055.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • V. Meden and K. Schönhammer (1992) Spectral functions for the Tomonaga-Luttinger model. Phys. Rev. B 46 (24), pp. 15753–15760.
  • P. M. Morse (1929) Diatomic molecules according to the wave mechanics. II: Vibrational levels. Phys. Rev., II. Ser. 34, pp. 57–64.
  • K. H. Müller (1988) Elastodynamics in parabolic cylinders. Z. Angew. Math. Phys. 39 (5), pp. 748–752.