About the Project

【AG真人官方qee9.com】加拿大28是不是骗局局89WEE4Mn

AdvancedHelp

(0.003 seconds)

21—30 of 61 matching pages

21: Bibliography U
  • K. M. Urwin and F. M. Arscott (1970) Theory of the Whittaker-Hill equation. Proc. Roy. Soc. Edinburgh Sect. A 69, pp. 28–44.
  • 22: Bibliography Y
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988) Computation of the derivatives of the Riemann zeta-function in the complex domain. USSR Comput. Math. and Math. Phys. 28 (4), pp. 115–124.
  • 23: Bibliography K
  • E. Kanzieper (2002) Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89 (25), pp. (250201–1)–(250201–4).
  • A. B. J. Kuijlaars and R. Milson (2015) Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, pp. 28–39.
  • 24: 25.14 Lerch’s Transcendent
    25.14.6 Φ ( z , s , a ) = 1 2 a s + 0 z x ( a + x ) s d x 2 0 sin ( x ln z s arctan ( x / a ) ) ( a 2 + x 2 ) s / 2 ( e 2 π x 1 ) d x , a > 0 if | z | < 1 ; s > 1 , a > 0 if | z | = 1 .
    25: 31.12 Confluent Forms of Heun’s Equation
    Mathieu functions (Chapter 28), spheroidal wave functions (Chapter 30), and Coulomb spheroidal functions (§30.12) are special cases of solutions of the confluent Heun equation. …
    26: 25.10 Zeros
    25.10.1 Z ( t ) exp ( i ϑ ( t ) ) ζ ( 1 2 + i t ) ,
    25.10.2 ϑ ( t ) ph Γ ( 1 4 + 1 2 i t ) 1 2 t ln π
    25.10.3 Z ( t ) = 2 n = 1 m cos ( ϑ ( t ) t ln n ) n 1 / 2 + R ( t ) , m = t / ( 2 π ) ,
    25.10.4 R ( t ) = ( 1 ) m 1 ( 2 π t ) 1 / 4 cos ( t ( 2 m + 1 ) 2 π t 1 8 π ) cos ( 2 π t ) + O ( t 3 / 4 ) .
    27: Bibliography M
  • H. J. W. Müller (1966a) Asymptotic expansions of ellipsoidal wave functions and their characteristic numbers. Math. Nachr. 31, pp. 89–101.
  • Y. Murata (1985) Rational solutions of the second and the fourth Painlevé equations. Funkcial. Ekvac. 28 (1), pp. 1–32.
  • 28: 24.2 Definitions and Generating Functions
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    28 2 37494 61029 870 2.72982 3107 ×10⁷
    Table 24.2.4: Euler numbers E n .
    n E n
    28 12522 59641 40362 98654 68285
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    8 0 17 0 28 0 14 0 4 1
    29: Bibliography P
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • 30: 23.9 Laurent and Other Power Series
    c 3 = 1 28 g 3 ,