About the Project

βš½πŸ“ occupi germei od $2.85 πŸ•΅ mills πŸ•΅ - evené Pilulky πŸ“βš½MΕ―ΕΎete Si occupi germei V exist, Krátce Datovaný germei 1 Na rhode, occupi germei canada

AdvancedHelp

(0.031 seconds)

21—30 of 919 matching pages

21: Publications
β–Ί
  • D. W. Lozier (1997) Toward a Revised NBS Handbook of Mathematical Functions, Technical Report NISTIR 6072 (September 1997), National Institute of Standards and Technology. PDF
  • β–Ί
  • B. V. Saunders and Q. Wang (2000) From 2D to 3D: Numerical Grid Generation and the Visualization of Complex Surfaces, Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25-28, 2000. PDF
  • β–Ί
  • D. W. Lozier (2003) The NIST Digital Library of Mathematical Functions Project, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 105–119. PDF
  • β–Ί
  • B. R. Miller and A. Youssef (2003) Technical Aspects of the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 121–136. PDF
  • β–Ί
  • Q. Wang and B. V. Saunders (2005) Web-Based 3D Visualization in a Digital Library of Mathematical Functions, Proceedings of the Web3D Symposium, Bangor, UK, March 29–April 1, 2005. PDF
  • 22: Frank W. J. Olver
    β–ΊIn 1989 the conference “Asymptotic and Computational Analysis” was held in Winnipeg, Canada, in honor of Olver’s 65th birthday, with Proceedings published by Marcel Dekker in 1990. … β–Ί
  • 23: Bibliography F
    β–Ί
  • B. R. Fabijonas, D. W. Lozier, and J. M. Rappoport (2003) Algorithms and codes for the Macdonald function: Recent progress and comparisons. J. Comput. Appl. Math. 161 (1), pp. 179–192.
  • β–Ί
  • M. V. Fedoryuk (1989) The Lamé wave equation. Uspekhi Mat. Nauk 44 (1(265)), pp. 123–144, 248 (Russian).
  • β–Ί
  • H. E. Fettis (1970) On the reciprocal modulus relation for elliptic integrals. SIAM J. Math. Anal. 1 (4), pp. 524–526.
  • β–Ί
  • A. S. Fokas, A. R. Its, and X. Zhou (1992) Continuous and Discrete Painlevé Equations. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 33–47.
  • β–Ί
  • G. Freud (1976) On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76 (1), pp. 1–6.
  • 24: 9.2 Differential Equation
    β–Ί
    9.2.1 d 2 w d z 2 = z ⁒ w .
    β–Ί
    9.2.2 w = Ai ⁑ ( z ) , Bi ⁑ ( z ) , Ai ⁑ ( z ⁒ e βˆ“ 2 ⁒ Ο€ ⁒ i / 3 ) .
    β–Ί
    9.2.4 Ai ⁑ ( 0 ) = 1 3 1 / 3 ⁒ Ξ“ ⁑ ( 1 3 ) = 0.25881 94037 ⁒ ,
    β–Ί
    9.2.5 Bi ⁑ ( 0 ) = 1 3 1 / 6 ⁒ Ξ“ ⁑ ( 2 3 ) = 0.61492 66274 ⁒ ,
    β–Ί W = ( 1 / w ) ⁒ d w / d z , where w is any nontrivial solution of (9.2.1). …
    25: 28.6 Expansions for Small q
    β–ΊThe coefficients of the power series of a 2 ⁒ n ⁑ ( q ) , b 2 ⁒ n ⁑ ( q ) and also a 2 ⁒ n + 1 ⁑ ( q ) , b 2 ⁒ n + 1 ⁑ ( q ) are the same until the terms in q 2 ⁒ n 2 and q 2 ⁒ n , respectively. … β–ΊNumerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. Here j = 1 for a 2 ⁒ n ⁑ ( q ) , j = 2 for b 2 ⁒ n + 2 ⁑ ( q ) , and j = 3 for a 2 ⁒ n + 1 ⁑ ( q ) and b 2 ⁒ n + 1 ⁑ ( q ) . (Table 28.6.1 is reproduced from Meixner et al. (1980, §2.4).) … β–Ίwhere k is the unique root of the equation 2 ⁒ E ⁑ ( k ) = K ⁑ ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . …
    26: 18.39 Applications in the Physical Sciences
    β–ΊAn important, and perhaps unexpected, feature of the EOP’s is now pointed out by noting that for 1D Schrödinger operators, or equivalent Sturm-Liouville ODEs, having discrete spectra with L 2 eigenfunctions vanishing at the end points, in this case ± see Simon (2005c, Theorem 3.3, p. 35), such eigenfunctions satisfy the Sturm oscillation theorem. …, k = 1 , there might be 3 nodes, rather than Sturm’s 1. … β–Ίand thus replacing p by n l 1 as in Table 18.8.1, line 11, or as in (18.39.33), … β–Ίa) Shizgal (2015), b) Blackmore et al. (1986), c) Gammaitoni et al. (1998), d) Liboff (2003). … β–Ίwith initial data c 0 = 1 , c 1 = 0 , where …
    27: Bibliography C
    β–Ί
  • J. Camacho, R. Guimerà, and L. A. N. Amaral (2002) Analytical solution of a model for complex food webs. Phys. Rev. E 65 (3), pp. (030901–1)–(030901–4).
  • β–Ί
  • L. D. Carr, C. W. Clark, and W. P. Reinhardt (2000) Stationary solutions of the one-dimensional nonlinear Schrödinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A 62 (063610), pp. 1–10.
  • β–Ί
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • β–Ί
  • Combinatorial Object Server (website) Department of Computer Science, University of Victoria, Canada.
  • β–Ί
  • R. M. Corless, D. J. Jeffrey, and H. Rasmussen (1992) Numerical evaluation of Airy functions with complex arguments. J. Comput. Phys. 99 (1), pp. 106–114.
  • 28: Bibliography M
    β–Ί
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • β–Ί
  • A. Máté, P. Nevai, and W. Van Assche (1991) The supports of measures associated with orthogonal polynomials and the spectra of the related selfadjoint operators. Rocky Mountain J. Math. 21 (1), pp. 501–527.
  • β–Ί
  • G. Matviyenko (1993) On the evaluation of Bessel functions. Appl. Comput. Harmon. Anal. 1 (1), pp. 116–135.
  • β–Ί
  • B. M. McCoy (1992) Spin Systems, Statistical Mechanics and Painlevé Functions. In Painlevé Transcendents: Their Asymptotics and Physical Applications, D. Levi and P. Winternitz (Eds.), NATO Adv. Sci. Inst. Ser. B Phys., Vol. 278, pp. 377–391.
  • β–Ί
  • P. N. Meisinger, T. R. Miller, and M. C. Ogilvie (2002) Phenomenological equations of state for the quark-gluon plasma. Phys. Rev. D 65 (3), pp. (034009–1)–(034009–10).
  • 29: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    β–ΊThe eigenfunction expansions of (1.8.1) and (1.8.2) follow from Cases 1, 2, above. … β–ΊThe resolvent set ρ ⁒ ( T ) consists of all z β„‚ such that (i) z T is injective, (ii) β„› ⁒ ( z T ) is dense in V , (iii) the resolvent ( z T ) 1 is bounded. … β–ΊBy Weyl’s alternative n 1 equals either 1 (the limit point case) or 2 (the limit circle case), and similarly for n 2 . …If n 1 = 1 then there are no nonzero boundary values at a ; if n 1 = 2 then the above boundary values at a form a two-dimensional class. … β–ΊThe materials developed here follow from the extensions of the Sturm–Liouville theory of second order ODEs as developed by Weyl, to include the limit point and limit circle singular cases. …
    30: 13.12 Products
    β–Ί
    13.12.1 M ⁑ ( a , b , z ) ⁒ M ⁑ ( a , b , z ) + a ⁒ ( a b ) ⁒ z 2 b 2 ⁒ ( 1 b 2 ) ⁒ M ⁑ ( 1 + a , 2 + b , z ) ⁒ M ⁑ ( 1 a , 2 b , z ) = 1 .
    β–ΊFor generalizations of this quadratic relation see Majima et al. (2000). β–ΊFor integral representations, integrals, and series containing products of M ⁑ ( a , b , z ) and U ⁑ ( a , b , z ) see Erdélyi et al. (1953a, §6.15.3).