About the Project

%E9%87%91%E8%82%AF%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%E6%AF%95%E4%B8%9A%E8%AF%81%E5%88%B6%E4%BD%9C%E3%80%90%E8%A8%80%E6%AD%A3 %E5%BE%AEaptao168%E3%80%910oB4ifw

AdvancedHelp

(0.019 seconds)

11—20 of 706 matching pages

11: 12.14 The Function W ( a , x )
Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … Here 𝒜 s ( t ) is as in §12.10(ii), σ is defined by … uniformly for t [ 1 + δ , 1 δ ] , with η given by (12.10.23) and 𝒜 ~ s ( t ) given by (12.10.24). … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). … For properties of the modulus and phase functions, including differential equations and asymptotic expansions for large x , see Miller (1955, pp. 8788). …
12: Bibliography T
  • N. M. Temme (1983) The numerical computation of the confluent hypergeometric function U ( a , b , z ) . Numer. Math. 41 (1), pp. 63–82.
  • N. M. Temme (1994a) A set of algorithms for the incomplete gamma functions. Probab. Engrg. Inform. Sci. 8, pp. 291–307.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • L. N. Trefethen (2008) Is Gauss quadrature better than Clenshaw-Curtis?. SIAM Rev. 50 (1), pp. 67–87.
  • 13: Bibliography S
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 8795.
  • G. Shanmugam (1978) Parabolic Cylinder Functions and their Application in Symmetric Two-centre Shell Model. In Proceedings of the Conference on Mathematical Analysis and its Applications (Inst. Engrs., Mysore, 1977), Matscience Rep., Vol. 91, Aarhus, pp. P81–P89.
  • J. Shao and P. Hänggi (1998) Decoherent dynamics of a two-level system coupled to a sea of spins. Phys. Rev. Lett. 81 (26), pp. 5710–5713.
  • A. Sidi (2012a) Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81 (280), pp. 2159–2173.
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.
  • 14: Bibliography D
  • K. Dilcher, L. Skula, and I. Sh. Slavutskiǐ (1991) Bernoulli Numbers. Bibliography (1713–1990). Queen’s Papers in Pure and Applied Mathematics, Vol. 87, Queen’s University, Kingston, ON.
  • P. G. L. Dirichlet (1837) Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1837, pp. 45–81 (German).
  • D. Dumont and G. Viennot (1980) A combinatorial interpretation of the Seidel generation of Genocchi numbers. Ann. Discrete Math. 6, pp. 77–87.
  • C. F. Dunkl and Y. Xu (2001) Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge.
  • A. J. Durán (1993) Functions with given moments and weight functions for orthogonal polynomials. Rocky Mountain J. Math. 23, pp. 87–104.
  • 15: 18.13 Continued Fractions
    See also Cuyt et al. (2008, pp. 9199).
    16: Bibliography K
  • T. A. Kaeding (1995) Pascal program for generating tables of SU ( 3 ) Clebsch-Gordan coefficients. Comput. Phys. Comm. 85 (1), pp. 8288.
  • A. V. Kitaev (1994) Elliptic asymptotics of the first and second Painlevé transcendents. Uspekhi Mat. Nauk 49 (1(295)), pp. 77–140 (Russian).
  • Y. Kivshar and B. Luther-Davies (1998) Dark optical solitons: Physics and applications. Physics Reports 298 (2-3), pp. 81–197.
  • N. M. Korobov (1958) Estimates of trigonometric sums and their applications. Uspehi Mat. Nauk 13 (4 (82)), pp. 185–192 (Russian).
  • M. D. Kruskal and P. A. Clarkson (1992) The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math. 86 (2), pp. 87–165.
  • 17: 22.14 Integrals
    Again, the branches of the inverse trigonometric functions must be continuous. … The indefinite integral of the 3rd power of a Jacobian function can be expressed as an elementary function of Jacobian functions and a product of Jacobian functions. The indefinite integral of a 4th power can be expressed as a complete elliptic integral, a polynomial in Jacobian functions, and the integration variable. See Lawden (1989, pp. 8788). …
    18: Bibliography B
  • C. Bardin, Y. Dandeu, L. Gauthier, J. Guillermin, T. Lena, J. M. Pernet, H. H. Wolter, and T. Tamura (1972) Coulomb functions in entire ( η , ρ )-plane. Comput. Phys. Comm. 3 (2), pp. 73–87.
  • D. K. Bhaumik and S. K. Sarkar (2002) On the power function of the likelihood ratio test for MANOVA. J. Multivariate Anal. 82 (2), pp. 416–421.
  • A. Bobenko and A. Its (1995) The Painlevé III equation and the Iwasawa decomposition. Manuscripta Math. 87 (3), pp. 369–377.
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 19: 3.2 Linear Algebra
    For more details see Golub and Van Loan (1996, pp. 87–100). … Assume that 𝐀 can be factored as in (3.2.5), but without partial pivoting. … is called the characteristic polynomial of 𝐀 and its zeros are the eigenvalues of 𝐀 . … has the same eigenvalues as 𝐀 . … Many methods are available for computing eigenvalues; see Golub and Van Loan (1996, Chapters 7, 8), Trefethen and Bau (1997, Chapter 5), and Wilkinson (1988, Chapters 8, 9).
    20: Bibliography O
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 8795.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • F. W. J. Olver (1995) On an asymptotic expansion of a ratio of gamma functions. Proc. Roy. Irish Acad. Sect. A 95 (1), pp. 5–9.