About the Project

%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD,%E7%8E%B0%E9%87%91%E6%A3%8B%E7%89%8C%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E5%AE%98%E7%BD%91,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E7%9C%9F%E4%BA%BA%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E6%A3%8B%E7%89%8C%E8%AE%BA%E5%9D%9B,%E7%BD%91%E7%BB%9C%E5%8D%9A%E5%BD%A9%E8%AE%BA%E5%9D%9B,%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E8%B5%8C%E5%8D%9A%E7%BD%91%E7%AB%99,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E5%9D%80ZDg0nAkCfB0BknED

AdvancedHelp

(0.070 seconds)

21—30 of 616 matching pages

21: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • 22: 26.7 Set Partitions: Bell Numbers
    B ( n ) is the number of partitions of { 1 , 2 , , n } . …
    26.7.1 B ( 0 ) = 1 ,
    26.7.2 B ( n ) = k = 0 n S ( n , k ) ,
    26.7.6 B ( n + 1 ) = k = 0 n ( n k ) B ( k ) .
    For higher approximations to B ( n ) as n see de Bruijn (1961, pp. 104–108).
    23: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    4 C n ( λ ) ( x ) 1 x 2 ( 2 λ + 1 ) x 0 n ( n + 2 λ )
    8 L n ( α ) ( x ) x α + 1 x 0 n
    9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
    24: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 25: 3.5 Quadrature
    If in addition f is periodic, f C k ( ) , and the integral is taken over a period, then … If f C 2 m + 2 [ a , b ] , then the remainder E n ( f ) in (3.5.2) can be expanded in the form … For the Bernoulli numbers B m see §24.2(i). … For further information, see Mason and Handscomb (2003, Chapter 8), Davis and Rabinowitz (1984, pp. 74–92), and Clenshaw and Curtis (1960). … For C functions Gauss quadrature can be very efficient. …
    26: 26.13 Permutations: Cycle Notation
    26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
    is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
    27: 12.14 The Function W ( a , x )
    For the modulus functions F ~ ( a , x ) and G ~ ( a , x ) see §12.14(x). … Other expansions, involving cos ( 1 4 x 2 ) and sin ( 1 4 x 2 ) , can be obtained from (12.4.3) to (12.4.6) by replacing a by i a and z by x e π i / 4 ; see Miller (1955, p. 80), and also (12.14.15) and (12.14.16). … uniformly for t [ 1 + δ , ) , with ζ , ϕ ( ζ ) , A s ( ζ ) , and B s ( ζ ) as in §12.10(vii). … F ~ or G ~ is the modulus and θ ~ or ψ ~ is the corresponding phase. … For properties of the modulus and phase functions, including differential equations and asymptotic expansions for large x , see Miller (1955, pp. 8788). …
    28: 2.10 Sums and Sequences
    For further information on C see §5.17. … For extensions to α 0 , higher terms, and other examples, see Olver (1997b, Chapter 8). … For generalizations and other examples see Olver (1997b, Chapter 8), Ford (1960), and Berndt and Evans (1984). … For examples see Olver (1997b, Chapters 8, 9). … For other examples and extensions see Olver (1997b, Chapter 8), Olver (1970), Wong (1989, Chapter 2), and Wong and Wyman (1974). …
    29: 1.11 Zeros of Polynomials
    Set z = w 1 3 a to reduce f ( z ) = z 3 + a z 2 + b z + c to g ( w ) = w 3 + p w + q , with p = ( 3 b a 2 ) / 3 , q = ( 2 a 3 9 a b + 27 c ) / 27 . … f ( z ) = z 3 6 z 2 + 6 z 2 , g ( w ) = w 3 6 w 6 , A = 3 4 3 , B = 3 2 3 . … Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … Let … Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
    30: Bibliography L
  • D. H. Lehmer (1940) On the maxima and minima of Bernoulli polynomials. Amer. Math. Monthly 47 (8), pp. 533–538.
  • J. Lehner (1941) A partition function connected with the modulus five. Duke Math. J. 8 (4), pp. 631–655.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • J. T. Lewis and M. E. Muldoon (1977) Monotonicity and convexity properties of zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 171–178.
  • N. A. Lukaševič (1968) Solutions of the fifth Painlevé equation. Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).