About the Project

%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E3%80%90%E5%A4%8D%E5%88%B6%E6%89%93%E5%BC%80%E7%BD%91%E5%9D%80%EF%BC%9A33kk55.com%E3%80%91%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E5%9C%A8%E7%BA%BF%E8%B5%8C%E5%8D%9A%E5%B9%B3%E5%8F%B0,%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E7%8E%A9%E6%B3%95%E4%BB%8B%E7%BB%8D,%E7%9C%9F%E4%BA%BA%E6%A2%AD%E5%93%88%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0%E7%BD%91%E5%9D%80YCBNyMNNVhsBhNMy

AdvancedHelp

(0.075 seconds)

31—40 of 673 matching pages

31: 19.37 Tables
Functions F ( ϕ , k ) and E ( ϕ , k )
( F ( ϕ , k ) is presented as Π ( ϕ , 0 , k ) .) … Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …
Functions R F ( x 2 , 1 , y 2 ) and R G ( x 2 , 1 , y 2 )
Function R F ( a 2 , b 2 , c 2 ) with a b c = 1
32: 28.8 Asymptotic Expansions for Large q
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
28.8.6 C ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 + 2 m + 1 8 h + m 4 + 2 m 3 + 263 m 2 + 262 m + 108 2048 h 2 + ) 1 / 2 ,
28.8.12 Q m ( x ) sin x cos 2 x ( 1 2 5 h ( s 2 + 3 ) + 1 2 9 h 2 ( s 3 + 3 s + 4 s 3 + 44 s cos 2 x ) ) + .
33: 28.6 Expansions for Small q
Leading terms of the of the power series for m = 7 , 8 , 9 , are: … Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. … where k is the unique root of the equation 2 E ( k ) = K ( k ) in the interval ( 0 , 1 ) , and k = 1 k 2 . For E ( k ) and K ( k ) see §19.2(ii). …
28.6.22 ce 1 ( z , q ) = cos z 1 8 q cos 3 z + 1 128 q 2 ( 2 3 cos 5 z 2 cos 3 z cos z ) 1 1024 q 3 ( 1 9 cos 7 z 8 9 cos 5 z 1 3 cos 3 z + 2 cos z ) + ,
34: 10.41 Asymptotic Expansions for Large Order
U 3 ( p ) = 1 4 14720 ( 30375 p 3 3 69603 p 5 + 7 65765 p 7 4 25425 p 9 ) ,
V 1 ( p ) = 1 24 ( 9 p + 7 p 3 ) ,
The curve E 1 B E 2 in the z -plane is the upper boundary of the domain 𝐊 depicted in Figure 10.20.3 and rotated through an angle 1 2 π . Thus B is the point z = c , where c is given by (10.20.18). … This is because A k ( ζ ) and ζ 1 2 B k ( ζ ) , k = 0 , 1 , , do not form an asymptotic scale (§2.1(v)) as ζ + ; see Olver (1997b, pp. 422–425). …
35: 10.60 Sums
10.60.3 e w w = 2 π n = 0 ( 2 n + 1 ) 𝗂 n ( 1 ) ( v ) 𝗄 n ( u ) P n ( cos α ) , | v e ± i α | < | u | .
36: 18.17 Integrals
For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … For the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. … For the hypergeometric function F 1 2 see §§15.1 and 15.2(i). … For the generalized hypergeometric function F 2 2 see (16.2.1). … For further integrals, see Apelblat (1983, pp. 189–204), Erdélyi et al. (1954a, pp. 38–39, 94–95, 170–176, 259–261, 324), Erdélyi et al. (1954b, pp. 42–44, 271–294), Gradshteyn and Ryzhik (2000, pp. 788–806), Gröbner and Hofreiter (1950, pp. 23–30), Marichev (1983, pp. 216–247), Oberhettinger (1972, pp. 64–67), Oberhettinger (1974, pp. 83–92), Oberhettinger (1990, pp. 44–47 and 152–154), Oberhettinger and Badii (1973, pp. 103–112), Prudnikov et al. (1986b, pp. 420–617), Prudnikov et al. (1992a, pp. 419–476), and Prudnikov et al. (1992b, pp. 280–308).
37: 16.4 Argument Unity
The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if … See Raynal (1979) for a statement in terms of 3 j symbols (Chapter 34). … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). A similar theory is available for very well-poised F 8 9 ( 1 ) ’s which are 2-balanced. …
38: 2.11 Remainder Terms; Stokes Phenomenon
Owing to the factor e ρ , that is, e | z | in (2.11.13), F n + p ( z ) is uniformly exponentially small compared with E p ( z ) . … However, to enjoy the resurgence property (§2.7(ii)) we often seek instead expansions in terms of the F -functions introduced in §2.11(iii), leaving the connection of the error-function type behavior as an implicit consequence of this property of the F -functions. In this context the F -functions are called terminants, a name introduced by Dingle (1973). … with m = 0 , 1 , 2 , , and C 1 , C 2 as in (2.7.17). … By n = 10 we already have 8 correct decimals. …
39: 26.11 Integer Partitions: Compositions
c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . … The Fibonacci numbers are determined recursively by
F 0 = 0 ,
26.11.6 c ( T , n ) = F n 1 , n 1 .
40: 30.3 Eigenvalues
30.3.11 8 = 2 ( 4 m 2 1 ) 2 A + 1 16 B + 1 8 C + 1 2 D ,
A = ( n m 1 ) ( n m ) ( n + m 1 ) ( n + m ) ( 2 n 5 ) 2 ( 2 n 3 ) ( 2 n 1 ) 7 ( 2 n + 1 ) ( 2 n + 3 ) 2 ( n m + 1 ) ( n m + 2 ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 1 ) 2 ( 2 n + 1 ) ( 2 n + 3 ) 7 ( 2 n + 5 ) ( 2 n + 7 ) 2 ,
B = ( n m 3 ) ( n m 2 ) ( n m 1 ) ( n m ) ( n + m 3 ) ( n + m 2 ) ( n + m 1 ) ( n + m ) ( 2 n 7 ) ( 2 n 5 ) 2 ( 2 n 3 ) 3 ( 2 n 1 ) 4 ( 2 n + 1 ) ( n m + 1 ) ( n m + 2 ) ( n m + 3 ) ( n m + 4 ) ( n + m + 1 ) ( n + m + 2 ) ( n + m + 3 ) ( n + m + 4 ) ( 2 n + 1 ) ( 2 n + 3 ) 4 ( 2 n + 5 ) 3 ( 2 n + 7 ) 2 ( 2 n + 9 ) ,
C = ( n m + 1 ) 2 ( n m + 2 ) 2 ( n + m + 1 ) 2 ( n + m + 2 ) 2 ( 2 n + 1 ) 2 ( 2 n + 3 ) 7 ( 2 n + 5 ) 2 ( n m 1 ) 2 ( n m ) 2 ( n + m 1 ) 2 ( n + m ) 2 ( 2 n 3 ) 2 ( 2 n 1 ) 7 ( 2 n + 1 ) 2 ,
D = ( n m 1 ) ( n m ) ( n m + 1 ) ( n m + 2 ) ( n + m 1 ) ( n + m ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 3 ) ( 2 n 1 ) 4 ( 2 n + 1 ) 2 ( 2 n + 3 ) 4 ( 2 n + 5 ) .