About the Project

%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E6%8A%80%E5%B7%A7,%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99,%E3%80%90%E7%9C%9F%E4%BA%BA%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E7%8E%B0%E9%87%91%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E7%9C%9F%E9%92%B1%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E3%80%90%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91

AdvancedHelp

Did you mean %E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E8%A7%84%E5%88%99,%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E6%8A%80%E5%B7%A7,%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99,%E3%80%90%E7%9C%9F%E4%BA%BA%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%caniuse.com%E3%80%91%E7%BD%91%E4%B8%8A%E7%9C%9F%E4%BA%BA%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E7%8E%B0%E9%87%91%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F,%E7%BD%91%E4%B8%8A%E7%9C%9F%E9%92%B1%E5%BE%B7%E5%B7%9E%E6%89%91%E5%85%8B%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E3%80%90%E5%8D%9A%E5%BD%A9%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80%E2%88%caniuse.com%E3%80%91 ?

(0.095 seconds)

1—10 of 759 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 19.37 Tables
β–Ί
Functions K ⁑ ( k ) and E ⁑ ( k )
β–Ί
Functions F ⁑ ( Ο• , k ) and E ⁑ ( Ο• , k )
β–ΊTabulated for Ο• = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , k 2 = 0 ⁒ ( .01 ) ⁒ 1 to 10D by Fettis and Caslin (1964). … β–ΊTabulated for Ο• = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , arcsin ⁑ k = 0 ⁒ ( 1 ∘ ) ⁒ 90 ∘ to 6D by Byrd and Friedman (1971), for Ο• = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , arcsin ⁑ k = 0 ⁒ ( 2 ∘ ) ⁒ 90 ∘ and 5 ∘ ⁒ ( 10 ∘ ) ⁒ 85 ∘ to 8D by Abramowitz and Stegun (1964, Chapter 17), and for Ο• = 0 ⁒ ( 10 ∘ ) ⁒ 90 ∘ , arcsin ⁑ k = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ to 9D by Zhang and Jin (1996, pp. 674–675). … β–ΊTabulated for Ο• = 5 ∘ ⁒ ( 5 ∘ ) ⁒ 80 ∘ ⁒ ( 2.5 ∘ ) ⁒ 90 ∘ , Ξ± 2 = 1 ⁒ ( .1 ) 0.1 , 0.1 ⁒ ( .1 ) ⁒ 1 , k 2 = 0 ⁒ ( .05 ) ⁒ 0.9 ⁒ ( .02 ) ⁒ 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …
3: 27.2 Functions
β–ΊFunctions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers, …( Ξ½ ⁑ ( 1 ) is defined to be 0.) …It can be expressed as a sum over all primes p x : … β–Ίis the sum of the Ξ± th powers of the divisors of n , where the exponent Ξ± can be real or complex. Note that Οƒ 0 ⁑ ( n ) = d ⁑ ( n ) . …
4: 8.23 Statistical Applications
β–ΊThe function B x ⁑ ( a , b ) and its normalization I x ⁑ ( a , b ) play a similar role in statistics in connection with the beta distribution; see Johnson et al. (1995, pp. 210–275). In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ⁑ ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …
5: 26.6 Other Lattice Path Numbers
β–Ί
Delannoy Number D ⁑ ( m , n )
β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . … β–Ί
26.6.12 C ⁑ ( n ) = k = 1 n N ⁑ ( n , k ) ,
β–Ί
26.6.13 M ⁑ ( n ) = k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ C ⁑ ( n + 1 k ) ,
β–Ί
26.6.14 C ⁑ ( n ) = k = 0 2 ⁒ n ( 1 ) k ⁒ ( 2 ⁒ n k ) ⁒ M ⁑ ( 2 ⁒ n k ) .
6: Bibliography H
β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 8084, 96 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 8084, 95 (Russian).
  • β–Ί
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • β–Ί
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • β–Ί
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • 7: Bibliography
    β–Ί
  • W. A. Al-Salam and L. Carlitz (1959) Some determinants of Bernoulli, Euler and related numbers. Portugal. Math. 18, pp. 9199.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. E. Andrews (1966a) On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. Oxford Ser. (2) 17, pp. 132–143.
  • β–Ί
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 8: Customize DLMF
    Note: Javascript and Cookies must be enabled to support customizations.
    9: 33.23 Methods of Computation
    β–ΊThe power-series expansions of §§33.6 and 33.19 converge for all finite values of the radii ρ and r , respectively, and may be used to compute the regular and irregular solutions. …Use of extended-precision arithmetic increases the radial range that yields accurate results, but eventually other methods must be employed, for example, the asymptotic expansions of §§33.11 and 33.21. … β–ΊThus the regular solutions can be computed from the power-series expansions (§§33.6, 33.19) for small values of the radii and then integrated in the direction of increasing values of the radii. … β–ΊCombined with the Wronskians (33.2.12), the values of F β„“ , G β„“ , and their derivatives can be extracted. … β–Ί (16) 3 ⁒ ΞΊ 2 + 2 should be 3 ⁒ ΞΊ 2 ⁒ c + 2 ). …
    10: 26.13 Permutations: Cycle Notation
    β–ΊAn explicit representation of Οƒ can be given by the 2 × n matrix: … β–Ίis ( 1 , 3 , 2 , 5 , 7 ) ⁒ ( 4 ) ⁒ ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ⁒ ( 6 , 8 ) . … β–ΊA permutation that consists of a single cycle of length k can be written as the composition of k 1 two-cycles (read from right to left): …A permutation with cycle type ( a 1 , a 2 , , a n ) can be written as a product of a 2 + 2 ⁒ a 3 + β‹― + ( n 1 ) ⁒ a n = n ( a 1 + a 2 + β‹― + a n ) transpositions, and no fewer. …