About the Project

Cauchy–Schwarz inequalities for sums and integrals

AdvancedHelp

(0.002 seconds)

31—40 of 196 matching pages

31: 19.25 Relations to Other Functions
§19.25(i) Legendre’s Integrals as Symmetric Integrals
with Cauchy principal value … If α 2 > c , then the Cauchy principal value is …
§19.25(ii) Bulirsch’s Integrals as Symmetric Integrals
§19.25(iii) Symmetric Integrals as Legendre’s Integrals
32: 18.17 Integrals
provided that + m + n is even and the sum of any two of , m , n is not less than the third; otherwise the integral is zero. … These integrals are Cauchy principal values (§1.4(v)). … provided that + m + n is even and the sum of any two of , m , n is not less than the third; otherwise the integral is zero. …
33: 2.3 Integrals of a Real Variable
2.3.2 0 e x t q ( t ) d t s = 0 q ( s ) ( 0 ) x s + 1 , x + .
is finite and bounded for n = 0 , 1 , 2 , , then the n th error term (that is, the difference between the integral and n th partial sum in (2.3.2)) is bounded in absolute value by | q ( n ) ( 0 ) / ( x n ( x σ n ) ) | when x exceeds both 0 and σ n . …
2.3.4 a b e i x t q ( t ) d t e i a x s = 0 q ( s ) ( a ) ( i x ) s + 1 e i b x s = 0 q ( s ) ( b ) ( i x ) s + 1 , x + .
2.3.5 a e i x t q ( t ) d t e i a x s = 0 q ( s ) ( a ) ( i x ) s + 1 , x + .
2.3.8 0 e x t q ( t ) d t s = 0 Γ ( s + λ μ ) a s x ( s + λ ) / μ , x + .
34: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
1.18.16 lim m a b | f ( x ) n = 0 m c n ϕ n ( x ) | 2 d x = 0 .
Should an eigenvalue correspond to more than a single linearly independent eigenfunction, namely a multiplicity greater than one, all such eigenfunctions will always be implied as being part of any sums or integrals over the spectrum. …
1.18.35 ( F ( T ) f ) ( x ) = a b ( n = 0 F ( λ n ) ϕ λ n ( x ) ϕ λ n ( y ) ¯ ) f ( y ) d y .
1.18.54 lim ϵ 0 + X f ( y ) x ± i ϵ y d y = P X f ( y ) x y d y i π f ( x ) .
In what follows, integrals over the continuous parts of the spectrum will be denoted by 𝝈 c , and sums over the discrete spectrum by 𝝈 p , with 𝝈 = 𝝈 c 𝝈 p denoting the full spectrum. …
35: 6.15 Sums
§6.15 Sums
6.15.2 n = 1 si ( π n ) n = 1 2 π ( ln π 1 ) ,
6.15.3 n = 1 ( 1 ) n Ci ( 2 π n ) = 1 ln 2 1 2 γ ,
6.15.4 n = 1 ( 1 ) n si ( 2 π n ) n = π ( 3 2 ln 2 1 ) .
36: 36.2 Catastrophes and Canonical Integrals
§36.2 Catastrophes and Canonical Integrals
§36.2(i) Definitions
Canonical Integrals
§36.2(iii) Symmetries
37: 9.12 Scorer Functions
9.12.17 Hi ( z ) = 3 2 / 3 π k = 0 Γ ( k + 1 3 ) ( 3 1 / 3 z ) k k ! ,
9.12.23 Gi ( x ) = 4 x 2 3 3 / 2 π 2 0 K 1 / 3 ( t ) ζ 2 t 2 d t , x > 0 ,
where the last integral is a Cauchy principal value (§1.4(v)). …
9.12.30 0 z Gi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π 1 π k = 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
9.12.31 0 z Hi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π + 1 π k = 1 ( 1 ) k 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 2 3 π δ ,
38: 19.9 Inequalities
§19.9(i) Complete Integrals
§19.9(ii) Incomplete Integrals
Simple inequalities for incomplete integrals follow directly from the defining integrals19.2(ii)) together with (19.6.12): … Sharper inequalities for F ( ϕ , k ) are: … Other inequalities for F ( ϕ , k ) can be obtained from inequalities for R F ( x , y , z ) given in Carlson (1966, (2.15)) and Carlson (1970) via (19.25.5).
39: 8.21 Generalized Sine and Cosine Integrals
8.21.14 Si ( a , z ) = z a k = 0 ( 1 ) k z 2 k + 1 ( 2 k + a + 1 ) ( 2 k + 1 ) ! , a 1 , 3 , 5 , ,
8.21.15 Ci ( a , z ) = z a k = 0 ( 1 ) k z 2 k ( 2 k + a ) ( 2 k ) ! , a 0 , 2 , 4 , .
8.21.16 Si ( a , z ) = z a k = 0 ( 2 k + 3 2 ) ( 1 1 2 a ) k ( 1 2 + 1 2 a ) k + 1 𝗃 2 k + 1 ( z ) , a 1 , 3 , 5 , ,
8.21.17 Ci ( a , z ) = z a k = 0 ( 2 k + 1 2 ) ( 1 2 1 2 a ) k ( 1 2 a ) k + 1 𝗃 2 k ( z ) , a 0 , 2 , 4 , .
40: 6.6 Power Series
6.6.1 Ei ( x ) = γ + ln x + n = 1 x n n ! n , x > 0 .
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.4 Ein ( z ) = n = 1 ( 1 ) n 1 z n n ! n ,
6.6.5 Si ( z ) = n = 0 ( 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) ,