About the Project

toroidal coordinates

AdvancedHelp

(0.002 seconds)

11—20 of 46 matching pages

11: 32.6 Hamiltonian Structure
P I P VI  can be written as a Hamiltonian system …
32.6.3 q = p ,
32.6.4 p = 6 q 2 + z .
32.6.5 σ = H I ( q , p , z ) ,
32.6.7 q = σ ,
12: 36.5 Stokes Sets
For z 0 , the Stokes set is expressed in terms of scaled coordinates
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
36.5.10 160 u 6 + 40 u 4 = Y 2 .
With coordinates
36.5.17 Y S ( X ) = Y ( u , | X | ) ,
13: 31.17 Physical Applications
Introduce elliptic coordinates z 1 and z 2 on S 2 . Then
31.17.2 x s 2 z k + x t 2 z k 1 + x u 2 z k a = 0 , k = 1 , 2 ,
14: Howard S. Cohl
Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and q -series. …
15: 1.5 Calculus of Two or More Variables
§1.5(ii) Coordinate Systems
Polar Coordinates
Cylindrical Coordinates
Spherical Coordinates
For applications and other coordinate systems see §§12.17, 14.19(i), 14.30(iv), 28.32, 29.18, 30.13, 30.14. …
16: 14.34 Software
§14.34(iv) Conical (Mehler) and/or Toroidal Functions
17: 19.26 Addition Theorems
19.26.3 z = ξ ζ + η ζ ξ η ξ η ζ + ξ η ζ ,
where …
19.26.14 ( p y ) R C ( x , p ) + ( q y ) R C ( x , q ) = ( η ξ ) R C ( ξ , η ) , x 0 , y 0 ; p , q { 0 } ,
19.26.24 z = ( ξ ζ + η ζ ξ η ) 2 / ( 4 ξ η ζ ) , ( ξ , η , ζ ) = ( x + λ , y + λ , z + λ ) ,
18: 30.1 Special Notation
19: Bibliography G
  • A. Gil and J. Segura (2000) Evaluation of toroidal harmonics. Comput. Phys. Comm. 124 (1), pp. 104–122.
  • A. Gil and J. Segura (2001) DTORH3 2.0: A new version of a computer program for the evaluation of toroidal harmonics. Comput. Phys. Comm. 139 (2), pp. 186–191.
  • A. Gil, J. Segura, and N. M. Temme (2000) Computing toroidal functions for wide ranges of the parameters. J. Comput. Phys. 161 (1), pp. 204–217.
  • 20: 14.1 Special Notation