About the Project

reduction to Legendre elliptic integrals

AdvancedHelp

(0.004 seconds)

5 matching pages

1: 19.14 Reduction of General Elliptic Integrals
§19.14 Reduction of General Elliptic Integrals
2: Bibliography L
  • G. Labahn and M. Mutrie (1997) Reduction of Elliptic Integrals to Legendre Normal Form. Technical report Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
  • 3: 19.15 Advantages of Symmetry
    §19.15 Advantages of Symmetry
    Symmetry makes possible the reduction theorems of §19.29(i), permitting remarkable compression of tables of integrals while generalizing the interval of integration. …These reduction theorems, unknown in the Legendre theory, allow symbolic integration without imposing conditions on the parameters and the limits of integration (see §19.29(ii)). …
    4: 19.36 Methods of Computation
    Because of cancellations in (19.26.21) it is advisable to compute R G from R F and R D by (19.21.10) or else to use §19.36(ii). Legendre’s integrals can be computed from symmetric integrals by using the relations in §19.25(i). … Computation of Legendre’s integrals of all three kinds by quadratic transformation is described by Cazenave (1969, pp. 128–159, 208–230). … For series expansions of Legendre’s integrals see §19.5. …
    5: Bibliography D
  • M. D’Ocagne (1904) Sur une classe de nombres rationnels réductibles aux nombres de Bernoulli. Bull. Sci. Math. (2) 28, pp. 29–32 (French).
  • A. Dienstfrey and J. Huang (2006) Integral representations for elliptic functions. J. Math. Anal. Appl. 316 (1), pp. 142–160.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • T. M. Dunster (2004) Convergent expansions for solutions of linear ordinary differential equations having a simple pole, with an application to associated Legendre functions. Stud. Appl. Math. 113 (3), pp. 245–270.
  • P. L. Duren (1991) The Legendre Relation for Elliptic Integrals. In Paul Halmos: Celebrating 50 Years of Mathematics, J. H. Ewing and F. W. Gehring (Eds.), pp. 305–315.