About the Project

a posteriori

AdvancedHelp

(0.002 seconds)

21—30 of 888 matching pages

21: 12.8 Recurrence Relations and Derivatives
12.8.1 z U ( a , z ) U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.2 U ( a , z ) + 1 2 z U ( a , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 ,
12.8.4 2 U ( a , z ) + U ( a 1 , z ) + ( a + 1 2 ) U ( a + 1 , z ) = 0 .
(12.8.1)–(12.8.4) are also satisfied by U ¯ ( a , z ) .
12.8.5 z V ( a , z ) V ( a + 1 , z ) + ( a 1 2 ) V ( a 1 , z ) = 0 ,
22: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
For details see the NIST news item Decay of a dark soliton into vortex rings in a Bose–Einstein condensate. … A. …A. …A. …
23: 12.6 Continued Fraction
For a continued-fraction expansion of the ratio U ( a , x ) / U ( a 1 , x ) see Cuyt et al. (2008, pp. 340–341).
24: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
25: Jim Pitman
 1949 in Tasmania) is a professor in the departments of statistics and mathematics at the University of California, Berkeley. …Pitman held a position in the Department of Mathematics and Mathematical Statistics at the University of Cambridge, England. …Pitman holds a B. …in statistics from the Australian National University, Canberra, and a Ph. … In November 2015, Pitman was named a Senior Associate Editor of the DLMF.
26: Barry I. Schneider
He is also a General Editor for the DLMF project. A graduate of the NYC Public Schools, he received his B. … in chemistry from Yale University and a Ph. … He was a visiting scientist at NIST from 1995 to 2013 and spent a sabbatical year at NIST in 2000-2001. …He also serves as a reviewer for a variety of journals inside and outside the US. …
27: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
28: 1.3 Determinants, Linear Operators, and Spectral Expansions
The cofactor A j k of a j k is …If μ times a row (column) of a determinant is added to another row (column), then the value of the determinant is unchanged. … For real-valued a j k , … In the case of a real matrix 𝐀 = 𝐀 T and in the complex case 𝐀 = 𝐀 H . … The corresponding eigenvectors 𝐚 1 , , 𝐚 n can be chosen such that they form a complete orthonormal basis in 𝐄 n . …
29: 17.10 Transformations of ψ r r Functions
17.10.1 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , d / a , c / b , d q / ( a b z ) ; q ) ( z , d , q / b , c d / ( a b z ) ; q ) ψ 2 2 ( a , a b z / d a z , c ; q , d a ) ,
17.10.2 ψ 2 2 ( a , b c , d ; q , z ) = ( a z , b z , c q / ( a b z ) , d q / ( a b z ) ; q ) ( q / a , q / b , c , d ; q ) ψ 2 2 ( a b z / c , a b z / d a z , b z ; q , c d a b z ) .
17.10.3 ψ 8 8 ( q a 1 2 , q a 1 2 , c , d , e , f , a q n , q n a 1 2 , a 1 2 , a q / c , a q / d , a q / e , a q / f , q n + 1 , a q n + 1 ; q , a 2 q 2 n + 2 c d e f ) = ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n ( q / c , q / d , a q / e , a q / f ; q ) n ψ 4 4 ( e , f , a q n + 1 / ( c d ) , q n a q / c , a q / d , q n + 1 , e f / ( a q n ) ; q , q ) ,
17.10.5 ( a q / b , a q / c , a q / d , a q / e , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) ; q ) ( f a , g a , f / a , g / a , q a 2 , q / a 2 ; q ) ψ 8 8 ( q a , q a , b a , c a , d a , e a , f a , g a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g ; q , q 2 b c d e f g ) = ( q , q / ( b f ) , q / ( c f ) , q / ( d f ) , q / ( e f ) , q f / b , q f / c , q f / d , q f / e ; q ) ( f a , q / ( f a ) , a q / f , f / a , g / f , f g , q f 2 ; q ) ϕ 7 8 ( f 2 , q f , q f , f b , f c , f d , f e , f g f , f , f q / b , f q / c , f q / d , f q / e , f q / g ; q , q 2 b c d e f g ) + idem ( f ; g ) .
17.10.6 ( a q / b , a q / c , a q / d , a q / e , a q / f , q / ( a b ) , q / ( a c ) , q / ( a d ) , q / ( a e ) , q / ( a f ) ; q ) ( a g , a h , a k , g / a , h / a , k / a , q a 2 , q / a 2 ; q ) ψ 10 10 ( q a , q a , b a , c a , d a , e a , f a , g a , h a , k a a , a , a q / b , a q / c , a q / d , a q / e , a q / f , a q / g , a q / h , a q / k ; q , q 2 b c d e f g h k ) = ( q , q / ( b g ) , q / ( c g ) , q / ( d g ) , q / ( e g ) , q / ( f g ) , q g / b , q g / c , q g / d , q g / e , q g / f ; q ) ( g h , g k , h / g , a g , q / ( a g ) , g / a , a q / g , q g 2 ; q ) ϕ 9 10 ( g 2 , q g , q g , g b , g c , g d , g e , g f , g h , g k g , g , q g / b , q g / c , q g / d , q g / e , q g / f , q g / h , q g / k ; q , q 2 b c d e f g h k ) + idem ( g ; h , k ) .
30: 5.10 Continued Fractions
where
a 0 = 1 12 ,
a 1 = 1 30 ,
a 2 = 53 210 ,
For exact values of a 7 to a 11 and 40S values of a 0 to a 40 , see Char (1980). …