About the Project

Jacobian

AdvancedHelp

(0.002 seconds)

11—20 of 56 matching pages

11: 22.5 Special Values
§22.5 Special Values
β–ΊTable 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z -derivative (or at a pole, the residue), for values of z that are integer multiples of K ⁑ , i ⁒ K ⁑ . … β–Ί
Table 22.5.2: Other special values of Jacobian elliptic functions.
β–Ί β–Ίβ–Ί
z
β–Ί
β–Ί
§22.5(ii) Limiting Values of k
β–Ί
12: 22.13 Derivatives and Differential Equations
β–Ί
§22.13(i) Derivatives
β–Ί
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
β–Ί β–Ίβ–Ί
d d z ⁑ ( sn ⁑ z ) = cn ⁑ z ⁒ dn ⁑ z d d z ⁑ ( dc ⁑ z )  = k 2 ⁒ sc ⁑ z ⁒ nc ⁑ z
β–Ί
β–Ί
§22.13(ii) First-Order Differential Equations
β–Ί
22.13.7 ( d d z ⁑ dc ⁑ ( z , k ) ) 2 = ( dc 2 ⁑ ( z , k ) 1 ) ⁒ ( dc 2 ⁑ ( z , k ) k 2 ) ,
β–Ί
§22.13(iii) Second-Order Differential Equations
13: 22.10 Maclaurin Series
β–Ί
§22.10(i) Maclaurin Series in z
β–Ί
22.10.1 sn ⁑ ( z , k ) = z ( 1 + k 2 ) ⁒ z 3 3 ! + ( 1 + 14 ⁒ k 2 + k 4 ) ⁒ z 5 5 ! ( 1 + 135 ⁒ k 2 + 135 ⁒ k 4 + k 6 ) ⁒ z 7 7 ! + O ⁑ ( z 9 ) ,
β–Ί
§22.10(ii) Maclaurin Series in k and k
β–Ί
22.10.6 dn ⁑ ( z , k ) = 1 k 2 2 ⁒ sin 2 ⁑ z + O ⁑ ( k 4 ) ,
β–Ί
14: 22 Jacobian Elliptic Functions
Chapter 22 Jacobian Elliptic Functions
15: 22.3 Graphics
β–Ί
§22.3(i) Real Variables: Line Graphs
β–Ί
§22.3(iii) Complex z ; Real k
β–Ί
§22.3(iv) Complex k
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 22.3.24: sn ⁑ ( x + i ⁒ y , k ) for 4 x 4 , 0 y 8 , k = 1 + 1 2 ⁒ i . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 22.3.25: sn ⁑ ( 5 , k ) as a function of complex k 2 , 1 ⁑ ( k 2 ) 3.5 , 1 ⁑ ( k 2 ) 1 . … Magnify 3D Help
16: 22.19 Physical Applications
β–Ί
§22.19(ii) Classical Dynamics: The Quartic Oscillator
β–Ί
§22.19(iii) Nonlinear ODEs and PDEs
β–Ί
§22.19(iv) Tops
β–Ί
§22.19(v) Other Applications
β–Ί
17: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
β–Ί
22.12.2 2 ⁒ K ⁑ ⁒ k ⁒ sn ⁑ ( 2 ⁒ K ⁑ ⁒ t , k ) = n = Ο€ sin ⁑ ( Ο€ ⁒ ( t ( n + 1 2 ) ⁒ Ο„ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) ⁒ Ο„ ) ,
β–Ί
22.12.8 2 ⁒ K ⁑ ⁒ dc ⁑ ( 2 ⁒ K ⁑ ⁒ t , k ) = n = Ο€ sin ⁑ ( Ο€ ⁒ ( t + 1 2 n ⁒ Ο„ ) ) = n = ( m = ( 1 ) m t + 1 2 m n ⁒ Ο„ ) ,
β–Ί
22.12.11 2 ⁒ K ⁑ ⁒ ns ⁑ ( 2 ⁒ K ⁑ ⁒ t , k ) = n = Ο€ sin ⁑ ( Ο€ ⁒ ( t n ⁒ Ο„ ) ) = n = ( m = ( 1 ) m t m n ⁒ Ο„ ) ,
β–Ί
22.12.13 2 ⁒ K ⁑ ⁒ cs ⁑ ( 2 ⁒ K ⁑ ⁒ t , k ) = lim N n = N N ( 1 ) n ⁒ Ο€ tan ⁑ ( Ο€ ⁒ ( t n ⁒ Ο„ ) ) = lim N n = N N ( 1 ) n ⁒ ( lim M m = M M 1 t m n ⁒ Ο„ ) .
18: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
β–ΊJacobian elliptic functions arise as solutions to certain nonlinear Schrödinger equations, which model many types of wave propagation phenomena. …
19: 22.11 Fourier and Hyperbolic Series
§22.11 Fourier and Hyperbolic Series
β–ΊIn (22.11.7)–(22.11.12) the left-hand sides are replaced by their limiting values at the poles of the Jacobian functions. … β–Ί
22.11.13 sn 2 ⁑ ( z , k ) = 1 k 2 ⁒ ( 1 E ⁑ K ⁑ ) 2 ⁒ Ο€ 2 k 2 ⁒ K ⁑ 2 ⁒ n = 1 n ⁒ q n 1 q 2 ⁒ n ⁒ cos ⁑ ( 2 ⁒ n ⁒ ΞΆ ) .
β–ΊA related hyperbolic series is …
20: 22.16 Related Functions
β–ΊSee Figure 22.16.2. … β–Ί
22.16.18 β„° ⁑ ( x , k ) = k 2 ⁒ 0 x cd 2 ⁑ ( t , k ) ⁒ d t + x + k 2 ⁒ sn ⁑ ( x , k ) ⁒ cd ⁑ ( x , k ) ,
β–Ί
22.16.19 β„° ⁑ ( x , k ) = k 2 ⁒ k 2 ⁒ 0 x sd 2 ⁑ ( t , k ) ⁒ d t + k 2 ⁒ x + k 2 ⁒ sn ⁑ ( x , k ) ⁒ cd ⁑ ( x , k ) ,
β–Ί
22.16.21 β„° ⁑ ( x , k ) = 0 x dc 2 ⁑ ( t , k ) ⁒ d t + x + sn ⁑ ( x , k ) ⁒ dc ⁑ ( x , k ) ,
β–Ί
22.16.26 β„° ⁑ ( x , k ) = 0 x ( cs 2 ⁑ ( t , k ) t 2 ) ⁒ d t + x 1 cn ⁑ ( x , k ) ⁒ ds ⁑ ( x , k ) .