About the Project

Feynman diagrams

AdvancedHelp

(0.002 seconds)

10 matching pages

1: 16.24 Physical Applications
§16.24(ii) Loop Integrals in Feynman Diagrams
Appell functions are used for the evaluation of one-loop integrals in Feynman diagrams. …
2: 34.9 Graphical Method
The graphical method establishes a one-to-one correspondence between an analytic expression and a diagram by assigning a graphical symbol to each function and operation of the analytic expression. Thus, any analytic expression in the theory, for example equations (34.3.16), (34.4.1), (34.5.15), and (34.7.3), may be represented by a diagram; conversely, any diagram represents an analytic equation. …
3: Bibliography C
  • L. G. Cabral-Rosetti and M. A. Sanchis-Lozano (2000) Generalized hypergeometric functions and the evaluation of scalar one-loop integrals in Feynman diagrams. J. Comput. Appl. Math. 115 (1-2), pp. 93–99.
  • G. M. Cicuta and E. Montaldi (1975) Remarks on the full asymptotic expansion of Feynman parametrized integrals. Lett. Nuovo Cimento (2) 13 (8), pp. 310–312.
  • 4: 20.13 Physical Applications
    In the singular limit τ 0 + , the functions θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195). …
    5: 7.20 Mathematical Applications
    6: 20.2 Definitions and Periodic Properties
    Figure 20.2.1: z -plane. …Left-hand diagram is the rectangular case ( τ purely imaginary); right-hand diagram is the general case. …
    7: DLMF Project News
    error generating summary
    8: Bibliography B
  • E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber (1978) Planar diagrams. Comm. Math. Phys. 59 (1), pp. 35–51.
  • 9: 3.5 Quadrature
    Table 3.5.21: Cubature formulas for disk and square.
    Diagram ( x j , y j ) w j R
    10: Errata
  • Table 3.5.21

    The correct corner coordinates for the 9-point square, given on the last line of this table, are ( ± 3 5 h , ± 3 5 h ) . Originally they were given incorrectly as ( ± 3 5 h , 0 ) , ( ± 3 5 h , 0 ) .

    Diagram ( x j , y j ) w j R
    \begin{picture}(2.4,3.0)(-1.2,-1.55)\put(0.0,0.0){\line(1,0){0.05}}\put(0.1,0.% 0){\line(1,0){0.05}}\put(0.2,0.0){\line(1,0){0.05}}\put(0.3,0.0){\line(1,0){0.% 05}}\put(0.4,0.0){\line(1,0){0.05}}\put(0.5,0.0){\line(1,0){0.05}}\put(0.6,0.0% ){\line(1,0){0.05}}\put(0.7,0.0){\line(1,0){0.05}}\put(0.8,0.0){\line(1,0){0.0% 5}}\put(0.9,0.0){\line(1,0){0.05}} \put(0.0,0.0){\line(0,1){0.05}}\put(0.0,0.1){\line(0,1){0.05}}\put(0.0,0.2){% \line(0,1){0.05}}\put(0.0,0.3){\line(0,1){0.05}}\put(0.0,0.4){\line(0,1){0.05}% }\put(0.0,0.5){\line(0,1){0.05}}\put(0.0,0.6){\line(0,1){0.05}}\put(0.0,0.7){% \line(0,1){0.05}}\put(0.0,0.8){\line(0,1){0.05}}\put(0.0,0.9){\line(0,1){0.05}% } \put(0.0,0.0){\line(-1,0){0.05}}\put(-0.1,0.0){\line(-1,0){0.05}}\put(-0.2,0.0% ){\line(-1,0){0.05}}\put(-0.3,0.0){\line(-1,0){0.05}}\put(-0.4,0.0){\line(-1,0% ){0.05}}\put(-0.5,0.0){\line(-1,0){0.05}}\put(-0.6,0.0){\line(-1,0){0.05}}\put% (-0.7,0.0){\line(-1,0){0.05}}\put(-0.8,0.0){\line(-1,0){0.05}}\put(-0.9,0.0){% \line(-1,0){0.05}} \put(0.0,0.0){\line(0,-1){0.05}}\put(0.0,-0.1){\line(0,-1){0.05}}\put(0.0,-0.2% ){\line(0,-1){0.05}}\put(0.0,-0.3){\line(0,-1){0.05}}\put(0.0,-0.4){\line(0,-1% ){0.05}}\put(0.0,-0.5){\line(0,-1){0.05}}\put(0.0,-0.6){\line(0,-1){0.05}}\put% (0.0,-0.7){\line(0,-1){0.05}}\put(0.0,-0.8){\line(0,-1){0.05}}\put(0.0,-0.9){% \line(0,-1){0.05}} \put(-1.0,1.0){\line(1,0){2.0}} \put(-1.0,1.0){\line(0,-1){2.0}} \put(1.0,-1.0){\line(-1,0){2.0}} \put(1.0,-1.0){\line(0,1){2.0}} \put(0.0,0.0){\circle*{0.15}}\put(0.7746,0.0){\circle*{0.15}}\put(-0.7746,0.0)% {\circle*{0.15}}\put(0.0,0.7746){\circle*{0.15}}\put(0.0,-0.7746){\circle*{0.1% 5}}\put(0.7746,0.7746){\circle*{0.15}}\put(-0.7746,0.7746){\circle*{0.15}}\put% (0.7746,-0.7746){\circle*{0.15}}\put(-0.7746,-0.7746){\circle*{0.15}}\end{picture}
    ( 0 , 0 ) 16 81 O ( h 6 )
    ( ± 3 5 h , 0 ) , ( 0 , ± 3 5 h ) 10 81
    ( ± 3 5 h , ± 3 5 h ) 25 324

    Reported 2014-01-13 by Stanley Oleszczuk.