About the Project

Askey–Wilson polynomials

AdvancedHelp

(0.005 seconds)

1—10 of 26 matching pages

1: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
§18.29 Asymptotic Approximations for q -Hahn and AskeyWilson Classes
Ismail (1986) gives asymptotic expansions as n , with x and other parameters fixed, for continuous q -ultraspherical, big and little q -Jacobi, and AskeyWilson polynomials. …For AskeyWilson p n ( cos θ ; a , b , c , d | q ) the leading term is given by …
2: 18.28 Askey–Wilson Class
§18.28(ii) AskeyWilson Polynomials
The polynomials p n ( x ; a , b , c , d | q ) are symmetric in the parameters a , b , c , d . …
Recurrence Relation
Duality
18.28.29 lim q 1 p n ( 1 1 2 x ( 1 q ) 2 ; q a , q b , q c , q d | q ) ( 1 q ) 3 n = W n ( x ; a , b , c , d ) .
3: 18.1 Notation
  • AskeyWilson: p n ( x ; a , b , c , d | q ) .

  • 4: Tom H. Koornwinder
    Koornwinder has published numerous papers on special functions, harmonic analysis, Lie groups, quantum groups, computer algebra, and their interrelations, including an interpretation of AskeyWilson polynomials on quantum SU(2), and a five-parameter extension (the Macdonald–Koornwinder polynomials) of Macdonald’s polynomials for root systems BC. …
    5: Richard A. Askey
     Wilson), introduced the Askey-Wilson polynomials. …
    6: 18.38 Mathematical Applications
    If we consider this abstract algebra with additional relation (18.38.9) and with dependence on a , b , c , d according to (18.38.7) then it is isomorphic with the algebra generated by K 0 = L given by (18.28.6_2), ( K 1 f ) ( z ) = ( z + z 1 ) f ( z ) and K 2 given by (18.38.4), and K 0 , K 1 , K 2 act on the linear span of the AskeyWilson polynomials (18.28.1). See Zhedanov (1991), Granovskiĭ et al. (1992, §3), Koornwinder (2007a, §2) and Terwilliger (2011). … The Dunkl type operator is a q -difference-reflection operator acting on Laurent polynomials and its eigenfunctions, the nonsymmetric AskeyWilson polynomials, are linear combinations of the symmetric Laurent polynomial R n ( z ; a , b , c , d | q ) and the ‘anti-symmetric’ Laurent polynomial z 1 ( 1 a z ) ( 1 b z ) R n 1 ( z ; q a , q b , c , d | q ) , where R n ( z ) is given in (18.28.1_5). … Dunkl type operators and nonsymmetric polynomials have been associated with various other families in the Askey scheme and q -Askey scheme, in particular with Wilson polynomials, see Groenevelt (2007), and with Jacobi polynomials, see Koornwinder and Bouzeffour (2011, §7). …
    7: Bibliography K
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • T. H. Koornwinder (1993) Askey-Wilson polynomials as zonal spherical functions on the SU ( 2 ) quantum group. SIAM J. Math. Anal. 24 (3), pp. 795–813.
  • T. H. Koornwinder (2007b) The structure relation for Askey-Wilson polynomials. J. Comput. Appl. Math. 207 (2), pp. 214–226.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • 8: Bibliography Z
  • A. S. Zhedanov (1991) “Hidden symmetry” of Askey-Wilson polynomials. Theoret. and Math. Phys. 89 (2), pp. 1146–1157.
  • 9: Errata
  • Equation (18.28.1)
    18.28.1 p n ( x ) = p n ( x ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j x + a 2 q 2 j ) ,
    18.28.1_5 R n ( z ) = R n ( z ; a , b , c , d | q ) = p n ( 1 2 ( z + z 1 ) ; a , b , c , d | q ) a n ( a b , a c , a d ; q ) n = ϕ 3 4 ( q n , a b c d q n 1 , a z , a z 1 a b , a c , a d ; q , q )

    Previously we presented all the information of these formulas in one equation

    p n ( cos θ ) = p n ( cos θ ; a , b , c , d | q ) = a n = 0 n q ( a b q , a c q , a d q ; q ) n ( q n , a b c d q n 1 ; q ) ( q ; q ) j = 0 1 ( 1 2 a q j cos θ + a 2 q 2 j ) = a n ( a b , a c , a d ; q ) n ϕ 3 4 ( q n , a b c d q n 1 , a e i θ , a e i θ a b , a c , a d ; q , q ) .
  • 10: 18.21 Hahn Class: Interrelations
    See accompanying text
    Figure 18.21.1: Askey scheme. … Magnify