About the Project

.2022世界杯中国男足蠃_『welcom_』世界杯冠军加多少分_w2n3c1o_2022年12月10日16时49分8秒_zwuzf2w8s

AdvancedHelp

The terms ".2022", "zwuzf2w8", "w2n3c1o" were not found.Possible alternative term: "2022".

(0.005 seconds)

1—10 of 355 matching pages

1: 11 Struve and Related Functions
2: 25.20 Approximations
  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 3: Staff
  • Leonard C. Maximon, George Washington University, Chaps. 10, 34

  • Frank W. J. Olver, University of Maryland and NIST, Chaps. 1, 2, 4, 9, 10

  • Nico M. Temme, Centrum Wiskunde Informatica, Chaps. 3, 6, 7, 12

  • Diego Dominici, State University of New York at New Paltz, for Chaps. 9, 10 (deceased)

  • Nico M. Temme, Centrum Wiskunde & Informatica (CWI), for Chaps. 3, 6, 7, 12

  • 4: 32.3 Graphics
    See accompanying text
    Figure 32.3.3: w k ( x ) for 12 x 0.73 and k = 1.85185 3 , 1.85185 5 . … Magnify
    See accompanying text
    Figure 32.3.4: w k ( x ) for 12 x 2.3 and k = 0.45142 7 , 0.45142 8 . … Magnify
    See accompanying text
    Figure 32.3.7: u k ( x ; 1 2 ) for 12 x 4 with k = 0.33554 691 , 0.33554 692 . … Magnify
    See accompanying text
    Figure 32.3.8: u k ( x ; 1 2 ) for 12 x 4 with k = 0.47442 , 0.47443 . … Magnify
    See accompanying text
    Figure 32.3.9: u k ( x ; 3 2 ) for 12 x 4 with k = 0.38736 , 0.38737 . … Magnify
    5: 12 Parabolic Cylinder Functions
    Chapter 12 Parabolic Cylinder Functions
    6: 27.2 Functions
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    2 1 2 3 15 8 4 24 28 12 6 56 41 40 2 42
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    8 4 4 15 21 12 4 32 34 16 4 54 47 46 2 48
    10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    7: 24.2 Definitions and Generating Functions
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    12 691 2730 27 02765
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    12 691 2730 2.53113 5531 ×10⁻¹
    Table 24.2.4: Euler numbers E n .
    n E n
    12 27 02765
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    8: 18.8 Differential Equations
    Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
    # f ( x ) A ( x ) B ( x ) C ( x ) λ n
    8 L n ( α ) ( x ) x α + 1 x 0 n
    10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
    12 H n ( x ) 1 2 x 0 2 n
    9: 8.26 Tables
  • Zhang and Jin (1996, Table 3.9) tabulates I x ( a , b ) for x = 0 ( .05 ) 1 , a = 0.5 , 1 , 3 , 5 , 10 , b = 1 , 10 to 8D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Stankiewicz (1968) tabulates E n ( x ) for n = 1 ( 1 ) 10 , x = 0.01 ( .01 ) 5 to 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 10: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    0 1 2 3 4 5 6 7 8 9 10
    8 1 17 145 833 3649 13073 40081 1 08545 2 65729 5 98417 12 56465
    10 1 21 221 1561 8361 36365 1 34245 4 33905 12 56465 33 17445 80 97453
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    0 1 4 9 8 323 12 15511 16 8 53467
    Table 26.6.4: Schröder numbers r ( n ) .
    n r ( n ) n r ( n ) n r ( n ) n r ( n ) n r ( n )
    0 1 4 90 8 41586 12 272 97738 16 2 09271 56706